Chapter 5 - Part 2

 AC - Bridges

 AC - Bridges

 Comparison Bridges

 Comparison Bridges

 Capacitance

 Capacitance
 Measurements

5.5 AC - BRIDGES

AC - Bridges enable us to perform precise measurements for the following:
>Reactance (capacitance and inductance) measurements.
$>$ Determining the (Q-factor OR D-factor).
> Frequency measurements.
> Testing and analyzing of antenna and transmission line performance

AC BRIDGE

The basic circuit of an ac bridge is exactly the same as the Wheatstone bridge circuit except that impedances are used instead of resistances, and the supply is an ac-source. Also, the null detector must be an ac instrument.

Principle

Structure

The bridge offset voltage can be found as:

$$
\Delta V=\left(\frac{Z_{3}}{Z_{1}+Z_{3}}-\frac{Z_{4}}{Z_{2}+Z_{4}}\right) V
$$

For balancing condition: $(\Delta V=0)$
Therefore, $\mathbf{Z}_{1} \cdot \mathbf{Z}_{4}=Z_{2} \cdot Z_{3}$
For AC-bridges, the null-condition is only valid if V_{a} and V_{h} are equal in amplitude and also same in-phase.
Substituting $\mathbf{Z}_{i}=Z_{i} \angle \theta_{i}$,

$$
Z_{2} Z_{3} \angle\left(\theta_{2}+\theta_{3}\right)=Z_{1} Z_{4} \angle\left(\theta_{1}+\theta_{4}\right.
$$

* First balance condition $\Rightarrow \quad Z_{2} Z_{3}=Z_{1} Z_{4} \quad=$ amplitude
* $2^{\text {nd }}$ balance condition $\Rightarrow \angle\left(\theta_{2}+\theta_{3}\right)=\angle\left(\theta_{1}+\theta_{4}\right)$ in-phase

EXAMPLE $: V_{A}$ AND V_{B}

V_{a} and V_{b} are equal in amplitude but not in-phase.

V_{a} and V_{b} are equal in-phase but not equal in amplitude.

V_{a} and V_{b} are equal in
amplitude and in-phase.

Dr. Wael Salah

EXAMPLE 7

The impedances of the bridge arms are

$$
\begin{array}{ll}
Z_{1}=200 \Omega \angle 30^{\circ} ; & Z_{2}=150 \Omega \angle 0^{\circ} \\
Z_{3}=250 \Omega \angle-40^{\circ} ; & Z_{x}=Z_{4}=\text { unknown }
\end{array}
$$

Determine the values of the unknown arm.

Solution 7

The first condition for balance requires that

$$
Z_{1} Z_{x}=Z_{2} Z_{3} ; \quad \therefore Z_{x}=\frac{Z_{2} Z_{3}}{Z_{1}}=\frac{150 \Omega \times 250 \Omega}{200 \Omega}=187.5 \Omega
$$

The second condition for balance requires that the sum of the phase angles of opposite arms should be equal

$$
\angle \phi_{1}+\angle \phi_{x}=\angle \phi_{2}+\angle \phi_{3} ; \quad \therefore \phi_{x}=\phi_{2}+\phi_{3}-\phi_{1}=0^{\circ}+\left(-40^{\circ}\right)-30^{\circ}=-70^{\circ}
$$

Hence the unknown arm impedance Z_{x} can be written as

\quad| $\quad Z_{x}=187.5 \Omega \angle-70^{\circ}=(64.13-j 176.19) \Omega$ |
| :--- |
| Where, Z_{x} |$=x+\mathrm{j} y=\boldsymbol{R}+j \boldsymbol{X}$

$x=r \cos \varphi=187.5 \cos (-70)=\mathbf{6 4 . 1 3}$
$y=r \sin \varphi=187.5 \sin (-70)=-176.19 \quad$ Dr. WaelSalah

CAPACITORS EQUIVALENT CIRCUITS

Capacitor Equivalent Circuits:

The equivalent circuit of a capacitor consists of a pure capacitance C and a resistance R.
Where, C_{p} represents the actual capacitance value, and \boldsymbol{R}_{p} represents the resistance of the dielectric or leakage resistance.
\not Capacitors with a high-resistance dielectric are best represented by a series $R C$ circuit,

* Capacitors with a low-resistance dielectric represented by the parallel $R C$ circuit.

The series impedance is $Z_{S}=R_{s}-\frac{j}{w C_{S}}$

The parallel admittance is $Y_{p}=\frac{1}{R_{p}}+j w C_{p}$

D-FACTOR OF A CAPACITOR

The quality of a capacitor can be expressed in terms of its power dissipation.

A very pure capacitor has a high dielectric resistance (low leakage current) and virtually zero power dissipation.

The dissipation factor or D-factor is simply the ratio of the component reactance (at a given frequency) to the resistance measurable at its terminals.

For a parallel equivalent circuit $D=\frac{X_{p}}{R_{p}}=\frac{1}{w C_{p} R_{p}}$

For a series equivalent circuit $D=\frac{R_{s}}{X_{s}}=w C_{s} R_{s}$

INDUCTORS EQUIVALENT CIRCUITS

Inductor Equivalent Circuits:

- The series equivalent circuit represents an inductor as a pure inductance L_{S}, in series with the resistance of its coil R_{S}.
- This series equivalent circuit is normally the best way to represent an inductor, because the actual winding resistance is involved and this is an important quantity.
- The parallel $R L$ equivalent circuit for an inductor can also be used.

The series impedance is $Z_{s}=R_{s}+j w L_{S}$
The parallel admittance is

$$
Y_{p}=\frac{1}{R_{p}}-\frac{\bar{j}}{w L_{p}}
$$

Q - FACTOR OF AN INDUCTOR

The quality of an inductor can be defined in terms of its power dissipation.

An ideal inductor should have zero winding resistance, and therefore zero power dissipated in the winding.

The quality factor or Q-factor, of the inductor is the ratio of its inductive reactance to its resistance at the op

For a series equivalent circuit: $Q=\frac{X_{s}}{R_{s}}=\frac{w L_{s}}{R_{s}}$
For a parallel equivalent circuit : $Q=\frac{R_{p}}{X_{p}}=\frac{R_{p}}{w L_{p}}$

10

5.6.1. Capacitance Comparison Bridges

i) Series-Resistance Capacitance Bridge (also known as Similar-angle bridge)

- The unknown capacitance C_{S} is represented in series with resistance R_{S}.
- A standard adjustable resistance R_{1} is connected in series with C_{1}.
- To obtain a bridge balance, resistors R_{1} and either C_{1} are adjusted alternately.
The impedances are:

$$
\begin{array}{lll}
Z_{1}=R_{1}-\frac{j}{w C_{1}} \quad ; & Z_{3}=R_{3} \\
Z_{2}=R_{s}-\frac{j}{w C_{s}} ; & Z_{4}=R_{4}
\end{array}
$$

When the bridge is balanced:

$$
\begin{gathered}
Z_{1} \cdot Z_{4}=Z_{2} \cdot Z_{3} \\
{\left[R_{1}-\frac{j}{w C_{1}}\right] \cdot R_{4}=\left[R_{s}-\frac{j}{w C_{s}}\right] \cdot R_{3}}
\end{gathered}
$$

Dr. Wael Salah

1. Capacitance Bridges

Then the equation is simplified as:

$$
R_{1} R_{4}-j \frac{R_{4}}{w C_{1}}=R_{s} R_{3}-j \frac{R_{3}}{w C_{s}}
$$

After equating the real terms for both sides, we get:

$$
R_{1} R_{4}=R_{s} R_{3} \quad R_{S}=\frac{R_{1} R_{4}}{R_{3}}
$$

And by equating the Imaginary terms both sides, we get: :

$$
j \frac{R_{4}}{w C_{1}}=j \frac{R_{3}}{w C_{s}}>C_{S}=\frac{C_{1} R_{3}}{R_{4}}
$$

Example

A series resistance-capacitance bridge as shown below has a $0.1 \mu F$ standard capacitor for $C 1$, and $R 3=10 \mathrm{k} \Omega$. Balance is achieved with 100 Hz supply frequency when $R 1=125 \Omega$ and $R 4=14.7 \mathrm{k} \Omega$. Calculate the resistive and capacitive components of measured capacitor and its dissipation factor.

SOLUTION

$$
\begin{aligned}
& C_{S}=\frac{C_{1} R_{3}}{R_{4}}=\frac{0.1 \mu \times 10 \mathrm{k}}{14.7 k}=0.068 \mu \mathrm{~F} \\
& R_{S}=\frac{R_{1} R_{4}}{R_{3}}=\frac{125 \times 14.7 \mathrm{k}}{10 k}=183.75 \Omega
\end{aligned}
$$

$$
D=w C_{S} R_{S}=2 \pi \times 100 \times 0.068 \times 10^{-6} \times 183.75=0.00785
$$

II) Parallel-Resistance Capacitance Bridge (also KNOWN AS SIMILAR-ANGLE BRIDGE)

In this bridge the unknown capacitance is represented by its parallel equivalent circuit; C_{p} in parallel with R_{p}, and Z_{3} and Z_{4} are resistors.

- The bridge balance is achieved by adjustment of R_{1} and C_{1}.

The load impedances are:

$$
\begin{array}{ll}
Y_{1}=\frac{1}{Z_{1}}=\frac{1}{R_{1}}+j w C_{1} & ; \quad Y_{p}=\frac{1}{Z_{2}}=\frac{1}{R_{p}}+j w C_{p} \\
Z_{3}=R_{3} & ;
\end{array} Z_{4}=R_{4} .
$$

When the bridge is balanced:

$$
Z_{1} Z_{4}=Z_{2} Z_{3}
$$

$$
\left(\frac{R_{1}}{1+j w C_{1} R_{1}}\right) \cdot R_{4}=\left(\frac{R_{p}}{1+j w C_{p} R_{p}}\right) \cdot R_{3}
$$

After equating the real \& Imaginary terms:

$$
R_{P}=\frac{R_{1} R_{4}}{R_{3}} \quad \text { and } \quad C_{P}=\frac{C_{1} R_{3}}{R_{4}}
$$

Dr. Wael Salah

EXERCISE 6

Find the parallel equivalent circuit for C_{S} and \boldsymbol{R}_{S} values determined in Example 8. Also determine the component values of \boldsymbol{R}_{1} and \boldsymbol{R}_{4} required to balance the calculated C_{P} and \boldsymbol{R}_{P} values in a parallel resistance-capacitance bridge. Assume that R_{3} remains at $10 \mathrm{k} \Omega$ and C_{1} at $0.1 \mu F$.

Solution Exercise 6

EXAMPLE

A parallel-resistance capacitance bridge has a standard capacitance value of $0.1 \mu \mathrm{~F}$. Balance is achieved at a supply frequency of 100 Hz when $R_{3}=10 \mathrm{k} \Omega, R_{1}=375 \mathrm{k} \Omega$, and $R_{4}=14.7 \mathrm{k} \Omega$.
Determine the resistive and capacitive components of the measured capacitor and its dissipation factor (D-factor).

Solution

For the given parallel-resistance capacitance bridge, find $R_{\mathrm{p}}, C_{\mathrm{p}}$ and the D-factor :-

$$
\begin{aligned}
& C_{P}=\frac{C_{1} R_{3}}{R_{4}}=\frac{0.1 \mu F \times 10 \mathrm{k} \Omega}{14.7 \mathrm{k} \Omega}=0.068 \mu F \\
& R_{P}=\frac{R_{1} R_{4}}{R_{3}}=\frac{375 \mathrm{k} \Omega \times 14.7 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=551.3 \mathrm{k} \Omega
\end{aligned}
$$

The dissipation factor is the D-factor

$$
D=\frac{1}{w C_{P} R_{P}}=\frac{1}{2 \pi \times 100 \times 0.068 \times 10^{-6} \times 551.3 \times 10^{3}} \approx 42.5 \times 10^{-3}
$$

