
 1

Chapter 9. PUBLIC KEY CRYPTOGRAPHY AND
RSA

Public key cryptography approach can be depicted by Figure 9.1:

The concept of public cryptography evolved from an attempt to attack two
of the most difficult problems associated with symmetric encryption. The
first problem concerns key distribution. The second problem is the problem
of “digital signatures” (authentication). Whitfield Diffie and Martin

 2

PUBLIC KEY CRYPTOGRAPHY AND RSA
(CONT 1)

Hellman, US cryptologists, invented in 1976 a method that addressed both
problems, and that was radically different from all previous approaches to
cryptography, going back over four millennia.

Applications of Public-Key Cryptosystems
Encryption/decryption
Digital signature
Key exchange

Requirements for Public-Key Cryptography

1. It is computationally easy for a party B to generate a pair (public key
KUb, private key KRb)

2. It is computationally easy for a sender A, knowing the public key and
the message M to be encrypted, to generate corresponding ciphertext:

C=EKUb(M)
3. It is computationally easy for the receiver B to decrypt the resulting

ciphertext using the private key:
M=DKRb (C)= DKRb (EKUb(M))

4. It is computationally infeasible for an opponent, knowing the public
key KUb to determine the private key KRb

5. It is computationally infeasible for an opponent, knowing the public
key KUb and a ciphertext C to recover original message M.

Requirements for public-key cryptography can be met if to discover trap-
door one-way functions, which are defined as follows:
A trap-door one-way function is a family of invertible functions fk, such
that:
Y=fk(X) easy, if k and X are known

 3

Requirements for Public-Key Cryptography (Cont 1)

X=fk-1(Y) easy, if k and Y are known
X=fk-1(Y) infeasible, if Y is known but k is not known

Public-Key Cryptanalysis
It is vulnerable to brute force attack -> use large keys.
Another form of attack is to find some way to compute the private key
given the public key. To date, it has not been mathematically proven that
this form of attack is infeasible for a particular public-key algorithm.
Thus, any given algorithm, including the widely used RSA algorithm, is
suspect.
Finally, there is a form of attack that is peculiar to public-key systems.
This is, in essence, a probable-message attack. Suppose, for example, that
a message were to be sent that consisted solely of a 56-bit DES key. An
opponent could encrypt all possible keys using the public key and could
decipher any message by matching the transmitted ciphertext. Thus, no
matter how large the key size of the public-key scheme, the attack is
reduced to a brute-force attack on a 56-bit key. This attack can be
thwarted by appending some random bits to such simple messages.

The RSA Algorithm
It was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman
at MIT and first published in 1978. The Rivest-Shamir-Adleman (RSA)
has since that time reigned supreme as most widely accepted and
implemented general-purpose approach to public-key encryption.

Description of the Algorithm
RSA makes use of an expression with exponentials. Plaintext is
encrypted in blocks, with each block having a binary value less than
some integer n. That is, the block size must be less or equal to n2log ; in
practice, the block size is k bits, where 122 kk n . Encryption and
decryption are of the following form, for some plaintext block M and
ciphertext block C:

nMnMnCM

nMC
edded

e

modmod)(mod

mod

Both sender and receiver must know the value of n. The sender knows
the value of e, and only receiver knows the value of d. Thus, this is a
public-key encryption algorithm with a public key of KU={e,n}, and a
private key of KR={d,n}. For this algorithm to be satisfactory for public-
key encryption, the following requirements must be met:

 4

Description of the Algorithm (Cont 1)

1. It is possible to find values of e,d,n such that nMM ed mod for all

M<n
2. It is relatively easy to calculate eM and dC for all values of M<n
3. It is infeasible to determine d given e and d.
For now, we focus on the 1st requirement and consider the other questions
later. We need to find a relationship of the form

nMM ed mod
A corollary to Euler’s theorem
(For every a and n that are relatively prime

na n mod1)(
where)(n is the Euler’s totient function – number of positive integers
less than n and relatively prime to n),
fits the bill:
Given two prime numbers, p and q, and two integers, n and m, such that
n=pq and 0<m<n, and arbitrary integer k, the following relationship
holds:

nmmm qpknk mod1)1)(1(1)((*)
(as far as for p,q prime,)1)(1()(qpn)
Thus, we can achieve the desired relationship if 1)(nked

This is equivalent to saying:
)(mod

)(mod1
1 ned

ned

That is, e and d are multiplicative inverses)(mod n . Note that, according
to the rules of modular arithmetic, this is true only if d (and therefore e) is
relatively prime to)(n . Equivalently, 1)),(gcd(dn .
We are now ready to state the RSA scheme. The ingredients are the
following:

p,q, two prime numbers (private, chosen)
n=pq (public, calculated)

e, with)(1;1)),(gcd(neen (public, chosen)
)(mod1 ned (private, calculated)

The private key consists of {d,n}, and the public key consists of {e,n}.
Suppose that user A has published its public key and that user B wishes
to send message M to A. Then B calculates nMC e mod and transmits C.
On receipt of this ciphertext, user A decrypts by calculating

nCM d mod . It is worthwhile to summarize the justification for this
algorithm. We have chosen e and d such that)(mod1 ned .

 5

Description of the Algorithm (Cont 2)
Therefore)(mod1 ned . Therefore, ed is of the form 1)(nk . But by
the corollary to Euler’s theorem (*), given two prime numbers, p and q,
and integer n=pq and M, with 0<M<n: nMMM qpknk mod1)1)(1(1)(
So, nMM ed mod . Now

nMnMnMnCM

nMC
edded

e

modmodmod)(mod

mod

Figure 9.5 summarizes

RSA algorithm:

 6

Description of the Algorithm (Cont 3)
An example is shown in Figure 9.6

For this example, the keys were generated as follows:
1. Select two prime numbers, p=17, q=11
2. Calculate n=pq=17x11=187
3. Calculate)(n =(p-1)(q-1)=16x10=160
4. Select e such that e is relatively prime to)(n =160 and less than)(n ;

we choose e=7.
5. Determine d such that 160mod1de and d<160. The correct value is

d=23, because 23x7=161=1x160+1; d can be calculated using the
extended Euclid’s algorithm:

M=160, b=7
A=(1,0,m), B=(0,1,b)
Q=A3/B3=160/7=22
T=A-QB=(1,-22,6)
A=(0,1,b), B=(1,-22,6)
Q=A3/B3=7/6=1
T=(-1,23,1)
A=(1,-22,6), B=(-1,23,1)
B3=1 =>b-1=B2=23.
The resulting keys are public key KU={7,187} and private key
KR={23,187}. The example shows the use of these keys for a plaintext
input of M=88. For encryption, we need to calculate C=887 mod 187.
Exploiting the properties of modular arithmetic, we can do this as
follows:
887 mod 187= [(884 mod 187)x(882 mod 187)x(88 mod 187)] mod 187
88 mod 187 = 88

 7

Description of the Algorithm (Cont 4)

882 mod 187 = 7744 mod 187 = 77
884 mod 187 = 772 mod 187 =132
887 mod 187 = (88x77x132) mod 187 = [((88x77) mod 187) x (132 mod
187)] mod 187 = (44x132) mod 187 = 5808 mod 187 = 11
For decryption, we calculate M=1123 mod 187:
1123 mod 187 = [(11 mod 187)x(112 mod 187)x(114 mod 187)x(118 mod
187)x
(118 mod 187)] mod 187 = [11x121x 14641 mod 187 x (118 mod 187)x
(118 mod 187)] mod 187 = [11x121x55x (118 mod 187)x
(118 mod 187)] mod 187 = [11x121x55x (3025 mod 187)x
(3025 mod 187)] mod 187 = [11x121x55x 33x33
] mod 187 = [((11x121) mod 187)x((55x 33) mod 187) x 33
] mod 187 = [(1331 mod 187)x(1815 mod 187)x33] mod 187 =
[22x132x33]mod 187 = [2904mod187x33]mod187= [99x33] mod 187=
3267 mod 187 = 88

The Security of RSA
Three possible approaches to attacking the RSA algorithm are as follows:
Brute force – use large keys
Mathematical attacks
Timing attacks

Mathematical attacks

We can identify three approaches to attacking RSA mathematically:
- Factor n into two prime factors, this enables calculation of)(n =(p-
1)(q-1), which, in turn, enables determination of d=e-1 mod)(n .
- Determine)(n directly, without first determining p and q.
- Determine d directly, without first determining)(n
Most discussions of cryptanalysis of RSA have focused on the task of
factoring n into its two prime numbers. Determining)(n given n is
equivalent to factoring n. With presently known algorithms, determining
d given e and n appears to at least as time consuming as the factoring
problem. Hence, we can use factoring performance as a benchmark
against which to evaluate the security of RSA.
Table 9.3 shows the progress in factoring performance:

 8

Mathematical attacks (Cont 1)

The level of effort is measured in MIPS-years: a million-instructions-per-
second-processor running for 1 year, which is about 3e13 instructions
executed. A 1-GHz Pentium is about a 250-MIPS machine.
We see that progress in factoring is impressive, and for the near future, a
key size in the range of 1024 to 2048 bits seems reasonable.

Timing Attacks
A timing attack is somewhat analogous to a burglar guessing the
combination of a safe by observing how long it takes for someone to turn
the dial from number to number. In this case, time for exponentiation
may be used for attacking.
There are simple counter-measures against timing attacks:
- constant exponentiation time – ensure that all exponentiations take the

same time, but this will degrade performance
- Random delay – better performance could be achieved by adding a

random delay to the exponentiation algorithm to confuse the timing
attack

- Blinding – multiply the ciphertext by a random number before
performing exponentiation. This process prevents the attacker from
knowing what ciphertext bits are being processed inside the computer
and therefore prevents the bit-by-bit analysis essential to the timing
attack. RSA Data Security reports a 2 to 10% performance penalty for
blinding.

