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Chapter 9. PUBLIC KEY CRYPTOGRAPHY AND 
RSA 

Public key cryptography approach can be depicted by Figure 9.1: 

 
The concept of public cryptography evolved from an attempt to attack two 
of the most difficult problems associated with symmetric encryption. The 
first problem concerns key distribution. The second problem is the problem 
of “digital signatures” (authentication). Whitfield Diffie and Martin  
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PUBLIC KEY CRYPTOGRAPHY AND RSA  
(CONT 1) 

Hellman, US cryptologists, invented in 1976 a method that addressed both 
problems, and that was radically different from all previous approaches to 
cryptography, going back over four millennia.  

Applications of Public-Key Cryptosystems 
Encryption/decryption 
Digital signature 
Key exchange 

 
Requirements for Public-Key Cryptography 

1. It is computationally easy for a party B to generate a pair (public key 
KUb, private key KRb) 

2. It is computationally easy for a sender A, knowing the public key and 
the message M to be encrypted, to generate corresponding ciphertext: 

C=EKUb(M) 
3. It is computationally easy for the receiver B to decrypt the resulting 

ciphertext using the private key: 
M=DKRb (C)= DKRb (EKUb(M)) 

4. It is computationally infeasible for an opponent, knowing the public 
key KUb to determine the private key KRb 

5. It is computationally infeasible for an opponent, knowing the public 
key KUb and a ciphertext C to recover original message M. 

Requirements for public-key cryptography can be met if to discover trap-
door one-way functions, which are defined as follows: 
A trap-door one-way function is a family of invertible functions fk, such 
that: 
Y=fk(X) easy, if k and X are known 
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Requirements for Public-Key Cryptography (Cont 1) 
 
X=fk-1(Y) easy, if k and Y are known 
X=fk-1(Y) infeasible, if Y is known but k is not known 

Public-Key Cryptanalysis 
It is vulnerable to brute force attack -> use large keys. 
Another form of attack is to find some way to compute the private key 
given the public key. To date, it has not been mathematically proven that 
this form of attack is infeasible for a particular public-key algorithm. 
Thus, any given algorithm, including the widely used RSA algorithm, is 
suspect. 
Finally, there is a form of attack that is peculiar to public-key systems. 
This is, in essence, a probable-message attack. Suppose, for example, that 
a message were to be sent that consisted solely of a 56-bit DES key. An 
opponent could encrypt all possible keys using the public key and could 
decipher any message by matching the transmitted ciphertext. Thus, no 
matter how large the key size of the public-key scheme, the attack is 
reduced to a brute-force attack on a 56-bit key. This attack can be 
thwarted by appending some random bits to such simple messages. 

The RSA Algorithm 
It was developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman 
at MIT and first published in 1978. The Rivest-Shamir-Adleman (RSA) 
has since that time reigned supreme as most widely accepted and 
implemented general-purpose approach to public-key encryption. 

Description of the Algorithm 
RSA makes use of an expression with exponentials. Plaintext is 
encrypted in blocks, with each block having a binary value less than 
some integer n. That is, the block size must be less or equal to n2log ; in 
practice, the block size is k bits, where 122  kk n . Encryption and 
decryption are of the following form, for some plaintext block M and 
ciphertext block C: 

nMnMnCM

nMC
edded

e

modmod)(mod

mod




 

Both sender and receiver must know the value of n. The sender knows 
the value of e, and only receiver knows the value of d. Thus, this is a 
public-key encryption algorithm with a public key of KU={e,n}, and a 
private key of KR={d,n}. For this algorithm to be satisfactory for public-
key encryption, the following requirements must be met: 



 4

Description of the Algorithm (Cont 1) 
 
1. It is possible to find values of e,d,n such that nMM ed mod  for all 

M<n 
2. It is relatively easy to calculate eM  and dC  for all values of M<n 
3. It is infeasible to determine d given e and d. 
For now, we focus on the 1st requirement and consider the other questions 
later. We need to find a relationship of the form 

nMM ed mod  
A corollary to Euler’s theorem 
(For every a and n that are relatively prime 

na n mod1)(   
where )(n  is the Euler’s totient  function – number of positive integers 
less than n and relatively prime to n),  
fits the bill: 
Given two prime numbers, p and q, and two integers, n and m, such that 
n=pq and 0<m<n, and arbitrary integer k, the following relationship 
holds: 

nmmm qpknk mod1)1)(1(1)(      (*) 
(as far as for p,q prime, )1)(1()(  qpn ) 
Thus, we can achieve the desired relationship if 1)(  nked   

This is equivalent to saying: 
)(mod

)(mod1
1 ned

ned







 

That is, e and d are multiplicative inverses )(mod n . Note that, according 
to the rules of modular arithmetic, this is true only if d (and therefore e) is 
relatively prime to )(n . Equivalently, 1)),(gcd( dn . 
We are now ready to state the RSA scheme. The ingredients are the 
following: 

p,q, two prime numbers (private, chosen) 
n=pq   (public, calculated) 

e, with )(1;1)),(gcd( neen    (public, chosen) 
)(mod1 ned      (private, calculated) 

The private key consists of {d,n}, and the public key consists of {e,n}. 
Suppose that user A has published its public key and that user B wishes 
to send message M to A. Then B calculates nMC e mod  and transmits C. 
On receipt of this ciphertext, user A decrypts by calculating 

nCM d mod . It is worthwhile to summarize the justification for this 
algorithm. We have chosen e and d such that )(mod1 ned  . 
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Description of the Algorithm (Cont 2) 
Therefore )(mod1 ned  . Therefore, ed is of the form 1)( nk . But by 
the corollary to Euler’s theorem (*), given two prime numbers, p and q, 
and integer n=pq and M, with 0<M<n: nMMM qpknk mod1)1)(1(1)(    
So, nMM ed mod . Now 

nMnMnMnCM

nMC
edded

e

modmodmod)(mod

mod




Figure 9.5 summarizes 

RSA algorithm: 
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Description of the Algorithm (Cont 3) 
An example is shown in Figure 9.6 

 
For this example, the keys were generated as follows: 
1. Select two prime numbers, p=17, q=11 
2. Calculate n=pq=17x11=187 
3. Calculate )(n =(p-1)(q-1)=16x10=160 
4. Select e such that e is relatively prime to )(n =160 and less than )(n ; 

we choose e=7. 
5. Determine d such that 160mod1de  and d<160. The correct value is 

d=23, because 23x7=161=1x160+1; d can be calculated using the 
extended Euclid’s algorithm: 

M=160, b=7 
A=(1,0,m), B=(0,1,b) 
Q=A3/B3=160/7=22 
T=A-QB=(1,-22,6) 
A=(0,1,b), B=(1,-22,6) 
Q=A3/B3=7/6=1 
T=(-1,23,1) 
A=(1,-22,6), B=(-1,23,1) 
B3=1 =>b-1=B2=23. 
The resulting keys are public key KU={7,187} and private key 
KR={23,187}. The example shows the use of these keys for a plaintext 
input of M=88. For encryption, we need to calculate C=887 mod 187. 
Exploiting the properties of modular arithmetic, we can do this as 
follows: 
887 mod 187= [(884 mod 187)x(882 mod 187)x(88 mod 187)] mod 187 
88 mod 187 = 88 
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Description of the Algorithm (Cont 4) 
 
882 mod 187 = 7744 mod 187 = 77 
884 mod 187 = 772 mod 187 =132 
887 mod 187 = (88x77x132) mod 187 = [((88x77) mod 187) x (132 mod 
187)] mod 187 = (44x132) mod 187 = 5808 mod 187 = 11 
For decryption, we calculate M=1123 mod 187: 
1123 mod 187 = [(11 mod 187)x(112 mod 187)x(114 mod 187)x(118 mod 
187)x 
(118 mod 187)] mod 187 = [11x121x 14641 mod 187 x (118 mod 187)x 
(118 mod 187)] mod 187 = [11x121x55x (118 mod 187)x 
(118 mod 187)] mod 187 = [11x121x55x (3025 mod 187)x 
(3025 mod 187)] mod 187 = [11x121x55x 33x33 
] mod 187 = [((11x121) mod 187 )x((55x 33) mod 187) x 33 
] mod 187 = [(1331 mod 187)x(1815 mod 187)x33] mod 187 = 
[ 22x132x33]mod 187 = [2904mod187x33]mod187= [99x33] mod 187= 
3267 mod 187 = 88 

The Security of RSA 
Three possible approaches to attacking the RSA algorithm are as follows: 
Brute force – use large keys 
Mathematical attacks 
Timing attacks 

Mathematical attacks 
 
We can identify three approaches to attacking RSA mathematically: 
- Factor n into two prime factors, this enables calculation of )(n =(p-
1)(q-1), which, in turn, enables determination of d=e-1 mod )(n . 
- Determine )(n  directly, without first determining p and q.  
- Determine d directly, without first determining )(n  
Most discussions of cryptanalysis of RSA have focused on the task of 
factoring n into its two prime numbers. Determining )(n  given n is 
equivalent to factoring n. With presently known algorithms, determining 
d given e and n appears to at least as time consuming as the factoring 
problem. Hence, we can use factoring performance as a benchmark 
against which to evaluate the security of RSA. 
Table 9.3 shows the progress in factoring performance: 
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Mathematical attacks (Cont 1) 
 

 
The level of effort is measured in MIPS-years: a million-instructions-per-
second-processor running for 1 year, which is about 3e13 instructions 
executed. A 1-GHz Pentium is about a 250-MIPS machine. 
We see that progress in factoring is impressive, and for the near future, a 
key size in the range of 1024 to 2048 bits seems reasonable. 

Timing Attacks 
A timing attack is somewhat analogous to a burglar guessing the 
combination of a safe by observing how long it takes for someone to turn 
the dial from number to number. In this case, time for exponentiation 
may be used for attacking. 
There are simple counter-measures against timing attacks: 
- constant exponentiation time – ensure that all exponentiations take the 

same time, but this will degrade performance 
- Random delay – better performance could be achieved by adding a 

random delay to the exponentiation algorithm to confuse the timing 
attack 

- Blinding – multiply the ciphertext by a random number before 
performing exponentiation. This process prevents the attacker from 
knowing what ciphertext bits are being processed inside the computer 
and therefore prevents the bit-by-bit analysis essential to the timing 
attack. RSA Data Security reports a 2 to 10% performance penalty for 
blinding. 

 
 


