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AES CIPHER 
The Inverse Substitute Byte Transformation 

Inverse substitute byte transformation, called InvSubBytes, makes use of the 
inverse of S-box shown in Table 5.4b. Note, for example, that the input {2a} 
produces the output {95}, and the input {95} to the S-box produces {2a}. 
The inverse S-box is constructed by applying the inverse of the 
transformation in (5.1) followed by taking the multiplicative inverse in 
GF(28). 
The inverse transformation is 

iiiii dbbbb   8mod)7(8mod)5(8mod)2(  

where d={05}, or 0000 0101. We can depict this transformation as follows: 
B0’  0 0 1 0 0 1 0 1  B0  1  
B1’  1 0 0 1 0 0 1 0  B1  0  
B2’  0 1 0 0 1 0 0 1  B2  1  
B3’ = 1 0 1 0 0 1 0 0 x B3 + 0  
B4’  0 1 0 1 0 0 1 0  B4  0  
B5’  0 0 1 0 1 0 0 1  B5  0  
B6’  1 0 0 1 0 1 0 0  B6  0  
B7’  0 1 0 0 1 0 1 0  B7  0  
To see that InvSubBytes is the inverse of SubBytes, label the matrices in 
SubBytes and InvSubBytes as X and Y, respectively, and the vector versions 
of constants c and d as C and D, respectively. For some 8-bit vector B, 
equation (5.2) becomes 

CXBB   (*) 
Assume that  

1 XY : YX=E 
where E is the unity matrix. 
Multiplying both parts of (*) by Y, we have 

DBYYCBYB

YCBYCYXBBY


  

Let’s check partially that Y is the inverse of X: diagonal elements of product 
should be 1’s, other elements – 0’s. For example, let’s calculate 2nd diagonal 
element (multiply 2nd row of Y by 2nd column of X, start numbering from 0): 
 
0*0+1*0+0*1+0*1+1*1+0*1+0*1+1*0=1 
 
If we multiply 2nd row of Y by 1st column of X, then 
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The Inverse Substitute Byte Transformation (Cont 1) 
 
0*0+1*1+0*1+0*1+1*1+0*1+0*0+1*0=1+1=0. 
So, we got 1 on the diagonal, and 0 outside of diagonal.  
The S-box is designed to be resistant to known cryptanalytic attacks. It 
provides low correlation between input bits and output bits, output cannot be 
expressed as simple mathematical function of the input, it has not fixed 
points (S-box(a)=a). 

Shift Row Transformation 
The forward shift row transformation, called ShiftRows, is depicted in Fig. 
5.5a.  
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Shift Row Transformation (Cont 1) 
 
The 1st row (number 0) is not altered, row number i is shifted left by i-byte 
circular left shift, i=1, 2, 3. The following is the example of such shift: 
87 F2 4D 97  87 F2 4D 97 
EC 6E 4C 90 => 6E 4C 90 EC 
4A C3 46 E7  46 E7 4A C3 
8C D8 95 A6  A6 8C D8 95 
 
The inverse shift row transformation, called InvShiftRows, performs the 
right circular shift of i-th row by i bytes, i=0,1,2,3. 
Shift row transformation ensures that the 4 bytes of one column are spread 
out to four different columns (Fig. 5.3 illustrates this effect). 

Mix Column Transformation 
The forward mix column transformation, called MixColumns, operates on 
each column individually. Each byte is mapped into a new value that is a 
function of all four bytes in the column. The transformation can be defined 
as the following matrix multiplication on State (Fig. 5.5b): 
02 03 01 01  S00 S01 S02 S03  S00’ S01’ S02’ S03’  
01 02 03 01 * S10 S11 S12 S13 = S10’ S11’ S12’ S13’ (5.3) 
01 01 02 03  S20 S21 S22 S23  S20’ S21’ S22’ S23’  
03 01 01 02  S30 S31 S32 S33  S30’ S31’ S32’ S33’  
Each element in the product matrix is the sum of products of elements of one 
row and one column. In this case, multiplications and additions are 
performed in GF(28). 
The following is the example of MixColumns; 
87 F2 4D 97  47 40 A3 4C 
6E 4C 90 EC => 37 D4 70 9F 
46 E7 4A C3  94 E4 3A 42 
A6 8C D8 95  ED A5 A6 BC 
1st column of the result is obtained by: 
{02){87}+{03}{6E}+{46}+{A6}  = {47} 
{87}+{02}{6E}+{03}{46}+{A6}  = {37} 
{87}+{6E}+{02}{46}+{03}{A6}  = {94} 
{03}{87}+{6E}+{46}+{02}{A6}  = {ED} 
For the 1st equation, we have {02}{87}=(0000 0010)(1000 0111)= 

1)1mod()()1( 2434823827  xxxxxxxxxxxxxx = 
(0001 0101)={15} 
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Mix Column Transformation (Cont 1) 
 
{03}{6E}=(0000 0011)(0110 1110)= 

xxxxxxxxxx  4572356 ))(1( = 
(1011 0010) = {B2} 
{02){87}+{03}{6E}+{46}+{A6}={15}+{B2}+{46}+{A6}= 
(0001 0101)+ 
(1011 0010)+ 
(0100 0110)+ 
(1010 0110)= 
(0100 0111)={47} 
The inverse mix column transformation, called InvMixColumns, is defined 
by the following matrix multiplication: 
0E 0B 0D 09  S00 S01 S02 S03  S00’ S01’ S02’ S03’  
09 0E 0B 0D * S10 S11 S12 S13 = S10’ S11’ S12’ S13’ (5.5) 
0D 09 0E 0B  S20 S21 S22 S23  S20’ S21’ S22’ S23’  
0B 0D 09 0E  S30 S31 S32 S33  S30’ S31’ S32’ S33’  
 
To show that matrix in (5.5) is inverse of matrix in (5.3), we are to check 
that their product in GF(28) is a unity matrix. Let’s make such partial check 
for S00’ (product of 0th  row by 0th column): 
S00’=(0E}{02}+{0B}{01}+{0D}{01}+{09}{03}=(0E}{02}+{0B}+{0D}+
{09}{03} 
{0E}{02}=(0000 1110)(0000 0010)= 23423 )( xxxxxxx  =(0001 
1100)={1C} 
{09}{03}=(0000 1001)(0000 0011)= 1)1)(1( 343  xxxxx =(0001 
1011)={1B} 
(0E}{02}+{0B}+{0D}+{09}{03}={1C}+{0B}+{0D}+{1B}= 
(0001 1100)+ 
(0000 1011)+ 
(0000 1101)+ 
(0001 1011)= 
(0000 0001)={01} 
The other elements are verified similarly. 
The AES document describes MixColumns in terms of polynomial 
arithmetic. In the standard, MixColumns is defined by considering each 
column of State to be a four-term polynomial with coefficients in GF(28). 
Each column is multiplied modulo )1( 4 x  by the fixed polynomial a(x), 
given by 
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Mix Column Transformation (Cont 2) 
 

}02{}01{}01{}03{)( 23  xxxxa   (5.7) 
Let’s show that such multiplication by polynomial (5.7) is equivalent to 
matrix multiplication, represented by (5.3). Each column of State matrix is 
viewed as set of coefficients of respective polynomial, e.g., 1st column of 
State corresponds to the polynomial: 
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In the last polynomial, coefficients are just same as used in matrix 
multiplication according to (5.3). Actually, 1st column of the result in (5.3) 
may be written as follows: 
S00’={02}S00+{03}S10+S20+S30 
S10’=S00+{02)S10+{03}S20+S30 
S20’=S00+S10+{02}S20+{03}S30 
S30’={03}S00+S10+S20+{02}S30 
Similarly, it may be shown that the transformation in the (5.5) corresponds 
to treating each column as a 4-term polynomial and multiplying each column 
by b(x), given by 

}0{}09{}0{}0{)( 23 exxdxbxb    (5.8) 
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Mix Column Transformation (Cont 3) 
 
It can be shown that )1mod()()( 41   xxaxb  
 
The mix column transformation combined with the shift row transformation 
ensures that after a few rounds, all output bits depend on all input bits. 

Add Round Key Transformation 
In the forward add round key transformation, called AddRoundKey, the 128 
bits of State are bitwise XORed with the 128 bits of the round key.  
The AddRoundKey transformation is as simple as possible and affects every 
bit of State. The complexity of the round key expansion together with the 
complexity of other stages of AES, ensures security. 

AES Key Expansion 
The AES key expansion algorithm takes as input a 4-word (16-byte) key and 
produces a linear array of 44 words (156 bytes). The following pseudo code 
describes the expansion: 
KeyExpansion(byte key[16], word w[44]){ 
 Word temp; 
 For(i=0;i<4;i++) w[i]=(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]); 
 For(i=4;i<44;i++){ 
   Temp=w[i-1]; 
    If(I mod 4 = 0) temp = SubWord(RotWord(temp)) XOR Rcon[i/4]; 
    W[i]=w[i-4] XOR temp; 
 } 
} 
The key is copied into the 1st four words of the expanded key. The remainder 
of the expanded key is filled in four words at a time. Each added word w[i] 
depends on the immediately preceding word, w[i-1], and the word four 
positions back, w[i-4]. In three out of four cases, a simple XOR is used. For 
a word whose position in the array w is a multiple of 4, a more complex 
function is used. Figure 5.6 illustrates the generation of the 1st  eight words 
of the expanded key, using the symbol g to represent the complex function. 
The function g consists of the following subfunctions: 

1. RotWord performs a 1-byte circular left shift on a word. This means 
that an input word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0]. 

2. SubWord performs a byte substitution on each byte of its input word, 
using the S-box (Table 5.4a) 

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j] 
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AES Key Expansion (Cont 1) 
 
The round constant is a word in which the three rightmost bytes are 
always 0. Thus the effect of an XOR of a word with Rcon is to only 
perform an XOR on the leftmost byte of the word. The round constant is  
different for each round and is defined as Rcon[j]=(RC[j],0,0,0), with 
RC[1]=1, RC[j]=2RC[j-1] and with multiplication defined over the field 
GF(28). The values of RC[j] in hexadecimal are 
 

J 1 2 3 4 5 6 7 8 9 10 
RC[j] 01 02 04 08 10 20 40 80 1b 36 

 
For example, suppose that the round key for round 8 is 
EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F 
Then the 1st four bytes (1st column) of the round key for round 9 are 
calculated as follows: 

I(decimal) temp After 
RotWord 

After 
SubWord 

Rcon(9) After 
XOR 
With 
Rcon 

W[i-4] W[i]=temp 
XOR w[i-
4] 

36 7f8d292f 8d292f7f 5da515d2 1b000000 46a515d2 Ead27321 Ac7766f3 
 
The inclusion of a round-dependent constant eliminates the symmetry, or 
similarity, between the ways in which round keys are generated in different 
rounds. It is an invertible transformation. Each key bit affects many round 
key bits. It is a nonlinear transformation.  
 
 


