
 1

ADVANCED ENCRYPTION STANDARD
The Origins of AES

The principal drawback of 3DES (which was recommended in 1999, Federal
Information Processing Standard FIPS PUB 46-3 as new standard with 168-
bit key) is that the algorithm is relatively sluggish in software. A secondary
drawback is the use of 64-bit block size. For reasons of both efficiency and
security, a larger block size is desirable.
In 1997, National Institute of Standards and Technology NIST issued a call
for proposals for a new Advanced Encryption Standard (AES), which should
have security strength equal to or better than 3DES, and significantly
improved efficiency. In addition, NIST also specified that AES must be a
symmetric block cipher with a block length of 128 bits and support for key
lengths of 128, 192, and 256 bits.
In a first round of evaluation, 15 proposed algorithms were accepted. A 2nd
round narrowed to 5 algorithms. NIST completed its evaluation process and
published a final standard (FIPS PUB 197) in November, 2001. NIST
selected Rijndael as the proposed AES algorithm. The 2 researches of AES
are Dr. Joan Daemon and Dr. Vincent Rijmen from Belgium.
AES Evaluation
Security – 128 minimal key size provides enough security
Cost – AES should have high computational efficiency

 2

The Origins of AES (Cont 1)

Algorithm and implementation characteristics – this includes variety of
considerations, including flexibility, suitability for hardware and software
implementations, simplicity

 3

The Origins of AES (Cont 2)

Additional criteria include: general security, software implementations,
restricted-space environments, hardware implementations, attacks on
implementation (timing attacks), encryption versus decryption, key agility,
flexibility, potential for instruction-level parallelism.

 4

The Origins of AES (Cont 3)

 5

The Origins of AES (Cont 4)

THE AES CIPHER

A number of AES parameters depend on the key length (Table 5.3). In the
description of this section, we assume the key length of 128 bits.
Figure 5.1 shows the overall structure of AES.

 6

OVERALL STRUCTURE OF AES

The input to the encryption and decryption algorithm is a single 128-bit
block, this block, in FIPS PUB 197, is depicted as a square matrix of bytes.
This block is copied into the State array, which is modified at each stage of
encryption or decryption. After the final stage, State is copied to an output
matrix. These operations are depicted in Figure 5.2a:

 7

OVERALL STRUCTURE OF AES (Cont 1)

Similarly, the 128-bit is depicted as a square matrix of bytes. This key is
expanded into an array of key schedule words; each word is 4 bytes and the
total key schedule is 44 words for the 128-bit key (Figure 5.2b). Ordering of
bytes within a matrix is by column.
Before delving into details, we can make several comments about overall
AES structure:

1. This cipher is not a Feistel structure.
2. The key that is provided as input is expanded into an array of 44

words (32-bits each), w[i]. 4 distinct words (128 bits) serve as a round
key for each round; these are indicated in Fig. 5.1

3. 4 different stages are used, 1 permutation and 3 of substitution:
- Substitute bytes – Uses an S-box to perform a byte-to-byte

substitution of the block
- Shift rows – A simple permutation
- Mix columns – A substitution that makes use of arithmetic over

GF(28).
- Add round key – A simple bitwise XOR of the current block with the

portion of the expanded key
4. The structure is quite simple. Figure 5.3 depicts the structure of a full

encryption round

 8

OVERALL STRUCTURE OF AES (Cont 2)

5. Only the Add Round Key stage uses the key. Any other stage is

reversible without knowledge of the key.
6. The Add Round Key is a form of Vernam cipher and by itself would

not be formidable. The other 3 stages together provide confusion,
diffusion, and nonlinearity, but by themselves would provide no
security because they do not use the key. We can view the cipher as
alternating operations of XOR encryption (Add Round Key), followed
by scrambling of the block.

7. Each stage is easily reversible
8. Decryption uses the same keys but in the reverse order. Decryption is

not identical to encryption
9. At each horizontal point (e.g., the dashed line) in Figure 5.1, State is

the same for both encryption and decryption
10. The final round of both encryption and decryption consists of only 3

stages; it is the consequence of the particular structure of AES.

 9

OVERALL STRUCTURE OF AES (Cont 3)
As was mentioned in Chapter 4, AES uses arithmetic in the finite field
GF(28), with the irreducible polynomial 1)(348 xxxxxm .

Substitute Byte Transformation. Forward and
Inverse Transformation

The Forward substitute byte transformation, called SubBytes, is a simple
table lookup (Figure 5.4a).

 10

Substitute Byte Transformation. Forward and
Inverse Transformation (Cont 2)

AES defines a 16x16 matrix of byte values, called an S-box (Table 5.4a),
that contains a permutation of all possible 256 8-bit values. Each
individual byte of State is mapped into a new byte in the following way:
The leftmost 4 bits are used as a row value and the rightmost 4 bits are
used as a column value. These row and column values serve as indexes
into the S-box to select a unique 8-bit output value. For example, the
hexadecimal value {95} references row 9, column 5 of the S-box, which
contains the value {2a}:

 11

Substitute Byte Transformation. Forward and
Inverse Transformation (Cont 3)

The S-box is constructed in the following fashion:
1. Initialize the S-box with the byte values in ascending order row by

row. Thus, the value of the byte at row x, column y is {xy}

 12

Substitute Byte Transformation. Forward and
Inverse Transformation (Cont 4)

2. Map each byte in the S-box to its multiplicative inverse in the finite

field GF(28); the value {00} is mapped to itself.
3. Consider that each byte in the S-box consists of 8 bits labeled

(b7,b6,b5,b4,b3,b2,b1,b0). Apply the following transformation to each
bit of each byte in the S-box:

iiiiiii cbbbbbb 8mod)7(8mod)6(8mod)5(8mod)4((5.1)

where ci is the i-th bit of byte c with the value {63}, that is,
(c7c7c5c4c3c2c1c0)=(01100011). The prime)(indicates that the
variable is to be updated by the value on the right. The AES standard
depicts this transformation in matrix form as follows:

B0’ 1 0 0 0 1 1 1 1 B0 1
B1’ 1 1 0 0 0 1 1 1 B1 1
B2’ 1 1 1 0 0 0 1 1 B2 0
B3’ = 1 1 1 1 0 0 0 1 x B3 + 0 (5.2)
B4’ 1 1 1 1 1 0 0 0 B4 0
B5’ 0 1 1 1 1 1 0 0 B5 1
B6’ 0 0 1 1 1 1 1 0 B6 1
B7’ 0 0 0 1 1 1 1 1 B7 0

Each element in the product matrix is the bitwise XOR of elements of
one row and one column. Further, the final addition, shown in (5.2), is a
bitwise XOR.
As an example, consider the input value {95}. The multiplicative inverse
in GF(28) is {95}-1 ={8a}, which is 10001010 in binary. Using equation
(5.2),

1 0 0 0 1 1 1 1 0 1 1 1 0
1 1 0 0 0 1 1 1 1 1 0 1 1
1 1 1 0 0 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1 x 1 + 0 = 1 + 0 = 1
1 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 1 0 1 1
0 0 1 1 1 1 1 0 0 1 1 1 0
0 0 0 1 1 1 1 1 1 0 0 0 0

The result is {2a}, which should appear in row {09} column {05} of the
S-box. This is verified by checking Table 5.4a.

