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FINITE FIELDS OF THE FORM GF(p) 
Finite fields play crucial role in many crypto algorithms. It can be shown 

that the order of a finite field must be a power of a prime pn, where n is a 

positive integer. Prime is an integer whose only positive integer factors are 

itself and 1. The finite field of order pn is usually denoted by GF(pn); GF 

stands for Galois field in honor of the French mathematician Evarist Galois 

(1811-1832, http://scienceworld.wolfram.com/biography/Galois.html ). 

Finite Fields of Order p 
For a given prime p, GF(p) is defined as the set Zp={0,1,..,p-1} of integers 

together with arithmetic operations modulo p. For such prime numbers, 

holds (M7) - Multiplicative inverse axiom.  

Because elements w of Zp are relatively prime to p, if we multiply all the 

elements of Zp by w, the resulting residues are all of elements Zp, permuted. 

Thus, exactly one of the residues has the value 1, respective multiplier is just 

the inverse element for w, designated w-1. Now, equation (4.2) can be 

written without condition: 

If pacab mod≡  then pcb mod≡   (4.4) 

Consequence is obtained by multiplication of both parts of (4.4) by a-1.  

The simplest finite field is GF(2): 

+ 0 1  X 0 1  w -w w-1 

0 0 1  0 0 0  0 0 - 

1 1 0  1 0 1  1 1 1 

Addition    Multiplication   Inverses 

http://scienceworld.wolfram.com/biography/Galois.html
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Finite Fields of Order p (CONT 1) 
Next is for GF(7): 

 
Finding the Multiplicative Inverse in GF(p) 

Table 4.3b may be used to find multiplicative inverse, but for large values of 

p it is not practical. 

If gcd(m,b)=1, then b has a multiplicative inverse modulo m. That is, for 

positive integer b<m, there exists a b-1<m such that b b-1=1 mod m. Euclid’s 

algorithm can be extended so that, in addition to finding gcd(m,b), if the gcd 

is 1, the algorithm returns the multiplicative inverse of b. 
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Finding the Multiplicative Inverse in GF(p) (CONT 1) 
EXTENDED EUCLID(m,b) 

1. (A1,A2,A3):=(1,0,m); (B1,B2,B3):=(0,1,b); 

2. if B3=0 return A3=gcd(m,b); no inverse 

3. if B3=1 return B3 = gcd(m,b); B2= b-1 mod m 
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5. (T1,T2,T3):=(A1-QB1, A2-QB2, A3-QB3) 

6. (A1,A2,A3):= (B1,B2,B3) 

7. (B1,B2,B3):= (T1,T2,T3) 

8. goto 2 

Throughout the computation, the following relationships hold: 

mT1+bT2=T3 mA1+bA2=A3 mB1+bB2=B3 

To see that algorithm correctly returns gcd(m,b), note that if we equate A 

and B in Euclid’s algorithm with A3 and B3 in the extended Euclid’s 

algorithm, then the treatment of the two variables is identical. Note also 

that if gcd(m,b)=1, then on the final step we would have B3=0 and A3 

=1. Therefore, on the preceding step, B3=1. But if B3=1, then we can say 

the following: 

mB1+bB2=B3 

mB1+bB2=1 

bB2=1-mB1 

bB2≡1 mod m 

Hence, B2 is the multiplicative inverse of b. 

Table 4.4 is an example of the execution of the algorithm. It shows that 

gcd(550,1759)=1 and that the multiplicative inverse of 550 is 355; that is, 

550x355≡1 mod 1759. 
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Finding the Multiplicative Inverse in GF(p) (CONT 2) 

 

POLYNOMIAL ARITHMETIC 
We are concerned with polynomials in a single variable x, and we can 

distinguish three classes of polynomial arithmetic: 

- Ordinary polynomial arithmetic, using the basic rules of algebra 

- Polynomial arithmetic in which the arithmetic on the coefficients is 

performed modulo p; that is, coefficients are in Zp 

- Polynomial arithmetic in which the coefficients are in Zp, and the 

polynomials are defined modulo a polynomial m(x) whose highest 

power is some integer n 

We consider these variants below. 

Ordinary Polynomial Arithmetic 

A polynomial of degree n (integer n≥0) is an expression of the form 

∑
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where ia  are elements of some designated set of numbers S, called the 

coefficient set, and 0≠na . We say that polynomials are defined over S. 
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POLYNOMIAL ARITHMETIC (CONT 1) 
A zeroth-degree is called a constant polynomial and is simply an element 

of S. An n-th degree polynomial is said to be a monic polynomial if 

1=na . 

In the context of abstract algebra, we are usually not interested in 

evaluating a polynomial for a particular value of x [e.g., f(7)]. To 

emphasize this point, the variable x is sometimes referred to as the 

indeterminate. 

Polynomial arithmetic includes the operations of addition, subtraction, 

and multiplication: 
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Division is similarly defined, but requires that S be a field. Examples of 

fields include the real numbers, rational numbers, and Zp for p prime. 

Note that the set of all integers is not a field and does not support 

polynomial division. 

Polynomial Arithmetic with Coefficients in Zp 
Within a field, given two elements a and b, the quotient a/b is also an 

element of the field. However, in general division will result in quotient 

and remainder; that is, not exact division. 

If the coefficient set S is integers, then )3/(5( 2 xx  does not have a solution, 

because it would require a coefficient with the value of 5/3, which is not  
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Polynomial Arithmetic with Coefficients in Zp 

(CONT 1) 
in the coefficient set. Suppose, we perform the same polynomial division 

over Z7. Then we have )3/(5( 2 xx =4x, which is a valid polynomial over 

Z7. 

However, in general, even if the coefficient set is a field, division will 

produce quotient and remainder: 
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  (4.5) 

If the degree of f(x) is n and degree of g(x) is m, ( nm ≤ ), then the degree 

of the quotient q(x) is n-m and the degree of the remainder r(x) is at most 

m-1. With the understanding that remainders are allowed, we can say that 

the polynomial division is possible if the coefficient set is a field. 

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the 

remainder r(x) in (4.5), that is, r(x) = f(x) mod g(x). If remainder r(x)=0, 

then we say that g(x) divides f(x), written as g(x)|f(x); equivalently, we 

can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x). 

If )(/)(,1)(,2)( 223 xgxfxxxgxxxf +−=++=  produces quotient q(x)=x+2, 

and remainder r(x)=x, as shown in Fig. 4.3d. This clearly verified by 

)(2)2()1)(2()()()( 23232 xfxxxxxxxxxxxrxgxq =++=++−+=++−+=+  
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Polynomial Arithmetic with Coefficients in Zp 

(CONT 2) 

 
For our purposes, polynomials over GF(2) are of the most interest. 

Fig.4.4 shows an example of polynomial arithmetic over GF(2): 
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Polynomial Arithmetic with Coefficients in Zp 

(CONT 3) 

 
A polynomial f(x) over a field F is called irreducible if and only if f(x) 

cannot be expressed as a product of two polynomials, both over F, and 

both of degree lower than that of f(x). By analogy to integers, an 

irreducible polynomial is also called a prime polynomial. 

The polynomial f(x)= 14 +x  over GF(2) is reducible, because 

)1)(1(1 234 ++++=+ xxxxx . 

Consider polynomial f(x)= 13 ++ xx . It is clear by inspection that x is not 

a factor of f(x). Also, x+1 is not a factor of f(x). Thus, f(x) has not factors 

of degree 1. But it is clear, that if f(x) is reducible then it must have one 

factor of degree 2 and one factor of degree 1. Therefore, f(x) is 

irreducible. 
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Finding the Greatest Common Divisor 
The polynomial c(x) is said to be the greatest common divisor of a(x) and 

b(x) if 

1. c(x) divides both a(x) and b(x) 

2. any divisor of a(x) and b(x) is a divisor of c(x) 

An equivalent definition: gcd[a(x),b(x)] is the polynomial of maximum 

degree that divides both a(x) and b(x). 

We can adapt Euclid’s algorithm to compute gcd. The equation (4.3) can 

be rewritten as the following theorem: 

gcd[a(x),b(x)]= gcd[b(x), a(x) mod b(x)]  (4.6) 

Euclid’s algorithm below assumes that the degree of a(x) is greater than 

the degree of b(x): 

EUCLID[a(x),b(x)] 

1. A(x):=a(x); B(x):=b(x) 

2. if B(x)=0 return A(x)= gcd[a(x),b(x)] 

3. R(x):=A(x) mod B(x) 

4. A(x):=B(x) 

5. B(x):=R(x) 

6. goto 2 

Find gcd[a(x),b(x)] for a(x)= 123456 ++++++ xxxxxx  and 

b(x)= 124 +++ xxx  

A(x)=a(x), B(x)=b(x) 

R(x)=A(x) mod B(x) = 123 ++ xx  

A(x)= 124 +++ xxx , B(x)= 123 ++ xx  

R(x)= A(x) mod B(x) = 0 

A(x)= 123 ++ xx , B(x)=0 
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Finding the Greatest Common Divisor (CONT 1) 
gcd[a(x),b(x)]=A(x)= 123 ++ xx  

Finite Fields of the Form GF(2n) 

 
In Table 4.5, arithmetic operations are defined in special way, so, 

contrary to previously considered case of 8 elements, here we have 

multiplicative inverses for all non-zero values. 
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Modular Polynomial Arithmetic 
Let set S of polynomial coefficients is a finite field Zp, and polynomials 

have degree from 0 to n-1. There are totally pn different such 

polynomials. The definition consists of the following elements: 

1. Arithmetic follows the ordinary rules of polynomial arithmetic using 

the basic rules of algebra, with the following two refinements 

2. Arithmetic on the coefficients is performed modulo p. That is, we use 

the arithmetic for the finite field Zp 

3. If multiplication results in polynomial of degree greater than n-1, then 

the polynomial is reduced modulo some irreducible polynomial m(x) 

of degree n. That is, we divide by m(x) and keep the remainder. For a 

polynomial f(x), the remainder is expressed as r(x) = f(x) mod m(x) 

The AES algorithm uses arithmetic in the finite field GF(28), p=2, n=8, 

with the irreducible polynomial m(x)= 1348 ++++ xxxx .  

It can be shown that the set of all polynomials modulo an irreducible nth 

degree polynomial m(x) satisfies the axioms in Fig. 4.1 and thus forms a 

finite field. Furthermore, all finite fields of a given order are isomorphic; 

that is, any two finite-field structures of a given order have the same 

structure, but the representation, or labels, of the elements may be 

different. 

To construct the finite field GF(23), we need to choose an irreducible 

polynomial of degree 3. There are only two such polynomials: 123 ++ xx  

and 13 ++ xx . Using the latter, Table 4.6 shows the addition and 

multiplication tables for GF(23): 
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Modular Polynomial Arithmetic (CONT 1) 

 

Finding the Multiplicative Inverse 
Just as Euclid’s algorithm can be adapted to find gcd of two polynomials,  

the extended Euclid’s algorithm can be also adapted to find the 

multiplicative inverse of a polynomial. The algorithm will find 

multiplicative inverse of b(x) modulo m(x) if the degree of b(x) is less 

than degree of m(x) and gcd[m(x),b(x)]=1. If m(x) is an irreducible 

polynomial, then it has no other factor than itself or 1, so that 

gcd[m(x),b(x)]=1. The algorithm follows: 
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Finding the Multiplicative Inverse (CONT 1) 
EXTENDED EUCLID[m(x),b(x)] 

1. [A1(x), A2(x), A3(x)]:=[1,0,m(x)]; [B1(x), B2(x), B3(x)]:=[0,1,b(x)]; 

2. if B3(x)=0 return A3(x)= gcd[m(x),b(x)]; no inverse 

3. if B3(x)=1 return B3(x)= gcd[m(x),b(x)]; B2(x)=b(x)-1 mod m(x) 

4. Q(x):= quotient of A3(x)/B3(x) 

5.  [T1(x), T2(x), T3(x)]:= [A1(x)-QB1(x), A2(x) –QB2(x), A3(x) –

QB3(x)] 

6. [A1(x), A2(x), A3(x)]:= [B1(x), B2(x), B3(x)] 

7. [B1(x), B2(x), B3(x)]:= [T1(x), T2(x), T3(x)] 

8. goto 2 

Table 4.7 shows the calculation of the multiplicative inverse of 17 ++ xx  

mod 1348 ++++ xxxx . The result is that 17 )1( −++ xx  = 7x . That is 

( 17 ++ xx )( 7x )≡1 mod 1348 ++++ xxxx .  

 
To get Table 4.5 a,b from Table 4.6 a,b it is sufficient to replace 

polynomials expressed as ordinary formulae by their codes (by sets of 

respective coefficients, for example, 12 +x  - by 101). 


