Chapter 4. GROUPS, RINGS AND FIELDS

These are basic notions of abstract algebra, which is widely used in cryptography.
A group G , sometimes denoted by $\{\mathrm{G}, \bullet\}$, is a set of elements with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an element $(\mathrm{a} \bullet \mathrm{b})$ in G, such that the following axioms are obeyed:
(A1) Closure: If a and b belong to G , then $\mathrm{a} \bullet \mathrm{b}$ is also in G
(A2) Associative: $\mathrm{a} \bullet(\mathrm{b} \bullet \mathrm{c})=(\mathrm{a} \bullet \mathrm{b}) \bullet \mathrm{c}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in G
(A3) Identity element: There is an element e in G such that $a \bullet e=e \cdot a=a$ for all a in G
(A4) Inverse element: For each a in G there is an element a^{\prime} in G such that $\mathrm{a} \cdot a^{\prime}=a^{\prime} \cdot \mathrm{a}=\mathrm{e}$
Example: set S_{N} of permutations on the set $\{1,2, . ., N\}$ with operation • composition of permutations is a group with $e=(1,2, . ., N)$. For $N=3$, (123) -(321)=(321); (213) •(132)=(312)
If a group has a finite number of elements, it is referred to as a finite group, and the order of the group is equal to the number of elements in the group. Otherwise, the group is infinite group.
A group is said to be abelian if it satisfies the following additional condition:
(A5) Commutative: $\mathrm{a} \bullet \mathrm{b}=\mathrm{b} \bullet \mathrm{a}$ for $\mathrm{all} \mathrm{a}, \mathrm{b}$ in G
The set of integers (positive, negative, and 0) under addition is an abelian group. The set of real numbers under multiplication is an abelian group.
The set S_{N} of permutations is not an abelian group.
When the group operation is addition, the identity element is 0 ; the inverse element of a
is -a ; and the subtraction is defined as: $\mathrm{a}-\mathrm{b}=\mathrm{a}+(-\mathrm{b})$.
Exponentiation within a group is defined as repeated application of the group operation, so that $a^{3}=a \bullet a \bullet a$. We define also $a^{0}=e$, the identity element, and $a^{-n}=\left(a^{\prime}\right)^{n}$, where a^{\prime} is inverse element for a. A group G is cyclic if every element of G is a power a^{k} (k - integer) of a fixed element $a \in G$. The element a is said to generate the group G, or to be a generator of G. A cyclic group is always abelian, and may be finite or infinite.

GROUPS, RINGS AND FIELDS (CONT 1)

A ring R, sometimes denoted by $\{\mathrm{R},+, \times\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in R the following axioms are obeyed:
(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5, For this case of an additive group we denote the identity element as 0 and the inverse of a as -a.
(M1) Closure under multiplication: If a and b belong to R, then ab is also in R (multiplication, as usually, is shown by concatenation of its operands)
(M2) Associativity of multiplication: $a(b c)=(a b) c$
(M3) Distributive laws: $a(b+c)=a b+a c$

$$
(a+b) c=a c+b c
$$

With respect to addition and multiplication, the set of all n-square matrices over the real numbers is a ring R .
The ring is said to be commutative if it satisfies the following additional condition:
(M4) Commutativity of multiplication: $\mathbf{a b}=\mathbf{b a}$
Let S be the set of all even integers under the usual operations of addition and multiplication. S is a commutative ring. The set of all n-square matrices over the real numbers is not a commutative ring.
We define integral domain, which is commutative ring that obeys the following axioms:
(M5) Multiplicative identity: There is an element 1 such that a1=1a=a for all a in R
(M6) No zero divisors: If \mathbf{a}, b in R and $\mathbf{a b}=\mathbf{0}$, then, either $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$.
Let S be the set of integers, positive, negative, and 0, under the usual operations of addition and multiplication. S is an integral domain.
A field F , sometimes denoted by $\{\mathrm{F},+, \times\}$, is a set of elements with two operations, called addition and multiplication, such that for $a l l a, b, c$ in F the following axioms are obeyed:
(A1-M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6.
(M7) Multiplicative inverse: For each a in F, except 0 , there is an element a^{-1} in \mathbf{F}, such that $a a^{-1}=a^{-1} a=1$
In essence, a field is a set in which we can do addition, subtraction, multiplication and division without leaving the set. Division is defined as: $a / b=a\left(b^{-1}\right)$

GROUPS, RINGS AND FIELDS (CONT 2)

Examples of fields are the rational numbers, real numbers, complex numbers. Set of all integers is not a field, because not every element of the set has a multiplicative inverse; in fact, only the elements 1 and -1 have multiplicative inverses in integers.
Fig. 4.1 summarises axioms that define groups, rings and fields

If a and b belong to S, then $a+b$ is also in S $a+(b+c)=(a+b)+c$ for all a, b, c in S There is an element 0 in R such that $a+0=0+a=a$ for all a in S For each a in S there is an element $-a$ in S such that $a+(-a)=(-a)+a=0$ $a+b=b+a$ for all a, b in S If a and b belong to S, then $a b$ is also in S $a(b c)=(a b) c$ for all a, b, c in S $a(b+c)=a b+a c$ for all a, b, c in S $(a+b) c=a c+b c$ for all a, b, c in S $a b=b a$ for all a, b in S
There is an element 1 in S such that $a 1=1 a=a$ for all a in S
If a, b in S and $a b=0$, then either $a=0$ or $b=0$
If a belongs to S and $a \quad 0$, there is an element a^{-1} in S such that $a a^{-1}=a^{-1} a=1$

Figure 4.1 Group, Ring, and Field
MODULAR ARITHMETIC
Given any positive integer n and any integer a , if we divide a by n , we get an integer quotient q and an integer remainder r that obey the following relationship:
$\mathrm{a}=\mathrm{qn}+\mathrm{r} 0 \leq r<n ; q=\lfloor a / n\rfloor$
where $\lfloor x\rfloor$ is the largest integer less than or equal to x .

Figure 4.2 The Relationship $a=q n+r ; 0 \leq r<n$
The remainder r is often referred to as a residue.

MODULAR ARITHMETIC (CONT 1)

$a=11, n=7,11=1 \times 7+4, r=4$
$a=-11, n=7,-11=(-2) \times 7+3, r=3$
If a is an integer and n is a positive integer, we define $a \bmod n$ to be the remainder when a is divided by n , Thus, for any integer a, we can always write
$a=\lfloor a / n\rfloor \times n+(a \bmod n)$
$11 \bmod 7=4,-11 \bmod 7=3$
Two integers a and b are said to be congruent modulo n , if $\mathrm{amod} \mathrm{n}=\mathrm{b} \bmod$ n. This is written as $a \equiv b \bmod n$.
$73 \equiv 4 \bmod 23 ; 21 \equiv-9 \bmod 10$

Divisors

We say that a nonzero b divides a if $a=m b$ for some m, where a, b, and m are integers. That is, b divides a if there is no remainder on division. The notation $\mathrm{b} \mid \mathrm{a}$ is commonly used to mean b divides a . Also, if $\mathrm{b} \mid \mathrm{a}$, we say that b is a divisor of a .
The positive divisors of 24 are 1,2,3,4,6,8,12,24.
The following relations hold:

- If a|l then $\mathrm{a}= \pm 1$
- If $a \mid b$ and $b \mid a$, then $a= \pm b$
- Any $b \neq 0$ divides 0
- If $b \mid g$ and $b \mid h$ then $b \mid(m g+n h)$ for arbitrary integers m and n

To see this last point, note that
If $\mathrm{b} \mid \mathrm{g}$, then $\mathrm{g}=\mathrm{b} \times \mathrm{g} 1$ for some integer g 1
If $b \mid h$, then $h=b \times h 1$ for some integer $h 1$
So
$\mathrm{mg}+\mathrm{nh}=\mathrm{mbg} 1+\mathrm{nbh} 1=\mathrm{b} \times(\mathrm{mg} 1+\mathrm{nh} 1)$
and therefore b divides $\mathrm{mg}+\mathrm{nh}$.
$B=7, g=14, h=63, m=3, n=2$
$7 \mid 14$ and $7 \mid 63$. To show: $7 \mid(3 \times 14+2 \times 63)$
We have $(3 \times 14+2 \times 63)=7(3 \times 2+2 \times 9)$
And it is obvious that $7 \mid 7(3 \times 2+2 \times 9)$
Note that if $a \equiv 0 \operatorname{modn}$, then $n \mid a$.

Properties of the Modulo operator

1. $a \equiv b \bmod n$ if $n \mid(a-b)$
2. $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{n}$ implies $\mathrm{b} \equiv \mathrm{a} \bmod \mathrm{n}$
3. $\mathrm{a} \equiv \mathrm{b} \bmod \mathrm{n}$ and $\mathrm{b} \equiv \mathrm{c} \bmod \mathrm{n}$ imply $\mathrm{a} \equiv \mathrm{c} \bmod \mathrm{n}$

Properties of the Modulo operator (CONT 1)

To demonstrate the $1^{\text {st }}$ point, if $n \mid(a-b)$, then $a-b=k n$ for some k. So we can write $\mathrm{a}=\mathrm{b}+\mathrm{kn}$. Therefore, $(\operatorname{a} \bmod \mathrm{n})($ remainder when $\mathrm{b}+\mathrm{kn}$ is divided by n$)=($ remainder when b is divided by n$)=(\mathrm{b} \bmod \mathrm{n})$
$23 \equiv 8$ mod 5 because $23-8=15=5 \times 3$
$-11 \equiv 5 \bmod 8$ because $-11-5=-16=8 x(-2)$
$81 \equiv 0 \bmod 27$ because $81-0=81=27 \times 3$

Modular arithmetic operations

Properties of modular arithmetic, working over $\{0,1, . ., n-1\}$:

1. $[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
2. $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
3. $[(a \bmod n) x(b \bmod n)] \bmod n=(a b) \bmod n$

We demonstrate the $1^{\text {st }}$ property. Define $(a \bmod n)=r_{a}$ and $(b \bmod n)=$ r_{b}. Then we can write $a=r_{a}+j n$ for some integer j and $b=r_{b}+k n$ for some integer k . Then
$(\mathrm{a}+\mathrm{b}) \bmod \mathrm{n}=\left(\mathrm{r}_{\mathrm{a}}+\mathrm{jn}+\mathrm{r}_{\mathrm{b}}+\mathrm{kn}\right) \bmod \mathrm{n}=\left(\mathrm{r}_{\mathrm{a}}+\mathrm{r}_{\mathrm{b}}+(\mathrm{k}+\mathrm{j}) \mathrm{n}\right) \bmod \mathrm{n}=\left(\mathrm{ra}_{\mathrm{a}}+\mathrm{r}_{\mathrm{b}}\right)$ $\bmod n=[(a \bmod n)+(b \bmod n)] \bmod n$
$11 \bmod 8=3,15 \bmod 8=7$
$[(11 \bmod 8)+(15 \bmod 8)] \bmod 8=10 \bmod 8=2$
$(11+15) \bmod 8=26 \bmod 8=2$
$[(11 \bmod 8)-(15 \bmod 8)] \bmod 8=-4 \bmod 8=4$
$(11-15) \bmod 8=-4 \bmod 8=-4$
$[(11 \bmod 8) x(15 \bmod 8)] \bmod 8=21 \bmod 8=5$
$(11 \times 15) \bmod 8=165 \bmod 8=5$
Exponentiation is performed, as in ordinary arithmetic
To find $11^{7} \bmod 13$, we can proceed as follows:
$11^{2}=121 \equiv 4 \bmod 13$
$11^{4} \equiv 4^{2} \equiv 3 \bmod 13$
$11^{7} \equiv 11 \times 4 \times 3 \equiv 132 \equiv 2 \bmod 13$
Thus, the rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into modular arithmetic.

Modular arithmetic operations (CONT 1)

Table 4.1 Arithmetic Modulo 8

$+$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

w	$-w$	
0	w^{-1}	
1	7	-
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

(c) Additive and multiplicative inverses modulo 8

\times	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

(b) Multiplication modulo 8

Table 4.1 introduces arithmetic modulo 8 . We see that not for all elements exist multiplicative inverses (for 2, 4, 6).

Properties of modular arithmetic

Let $\mathrm{Zn}=\{0,1, . ., \mathrm{n}-1\}$. This is referred to as the set of residues, or residue class modulo n . To be more precise, each integer in Zn represents a residue class. We can labe the residue classes modulo n as [0], [1],.., [n1], where
$[r]=\{a: a$ is integer, $a \equiv r \bmod n\}$
Of all the integers in the residue class, the smallest nonnegative integer is the one usually used to represent the residue class. Finding the smallest nonnegative integer to which k is congruent modulo n is called reducing k modulo n .

Properties of modular arithmetic (CONT 1)

If we perform modulo arithmetic within Zn , the properties shown in Table 4.2 hold for integers in Zn . Thus, Zn is a commutative ring with a multiplicative identity element.

Table 4.2 Properties of Modular Arithmetic for Integers in $\mathbf{Z}_{\boldsymbol{n}}$

Property	Expression
Commutative laws	$\begin{aligned} & (w+x) \bmod n=(x+w) \bmod n \\ & (w \times x) \bmod n=(x \times w) \bmod n \end{aligned}$
Associative laws	$\begin{aligned} & {[(w+x)+y] \bmod n=[w+(x+y)] \bmod n} \\ & {[(w \times x) \times y] \bmod n=[w \times(x \times y)] \bmod n} \end{aligned}$
Distributive laws	$\begin{aligned} & {[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n} \\ & {[w+(x \times y)] \bmod n=[(w+x) \times(w+y)] \bmod n} \end{aligned}$
Identities	$\begin{aligned} & (0+\mathrm{w}) \bmod n=\mathrm{w} \bmod n \\ & (1 \times \mathrm{w}) \bmod n=\mathrm{w} \bmod n \end{aligned}$
Additive inverse ($-w$)	For each $w \in \mathrm{Z}_{n}$, there exists a z such that $w+z=0 \bmod n$

There is one peculiarity of modular arithmetic that sets it apart from ordinary arithmetic. First, observe that, as in ordinary arithmetic, we can write
If $(\mathrm{a}+\mathrm{b}) \equiv(\mathrm{a}+\mathrm{c}) \bmod \mathrm{n}$ then $\mathrm{b} \equiv \mathrm{c} \bmod \mathrm{n}$
$(5+23) \equiv(5+7) \bmod 8$, then $23 \equiv 7 \bmod 8$
Equation (4.1) is consistent with the existence of an additive inverse. Adding the additive inverse of a to both sided of (4.1), we have $((-a)+a+b) \equiv((-a)+a+c) \bmod n$
$\mathrm{b} \equiv \mathrm{c} \bmod \mathrm{n}$
However, the following statement is true only with the attached condition:

If $(\mathrm{a} \times \mathrm{b}) \equiv(\mathrm{a} \times \mathrm{c}) \bmod \mathrm{n}$ then $\mathrm{b} \equiv \mathrm{c} \bmod \mathrm{n}$ if a is relatively prime to b (4.2)
Where the term relatively prime is defined as follows: Two integers are relatively prime if their only common positive integer factor is 1 . Similar to the case of equation (4.1), we can say that (4.2) is consistent with the existence of a multiplicative inverse of a. Applying the multiplicative inverse of a to both sides of (4.2), we have

Properties of modular arithmetic (CONT 2)

$\left(\left(a^{-1}\right) a b\right) \equiv\left(\left(a^{-1}\right) a c\right) \bmod n$
$b \equiv c \bmod n$
To see this, consider an example, in which condition does not hold:
$6 \times 3=18 \equiv 2 \bmod 8$
$6 x 7=42 \equiv 2 \bmod 8$
Yet $3 \neq 7 \bmod 8$ because 6 and 8 are not relatively prime
With $a=6$ and $n=8$,
Z8 $\quad 012 \begin{array}{lllll} & 3 & 5 & 6 & 7\end{array}$
Multiply by 6: 06121824303642
Residues: $\begin{array}{lllllll}064 & 2 & 6 & 4\end{array}$
However, if we take $a=5$ and $n=8$, whose only common factor is 1 , Z8 $\quad 012 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$
Multiply by 5: 05101520253035
Residues: 052741663
The line of residues contains all integers in Z8, in a different order.
In general, an integer has a multiplicative inverse in Zn , if that integer is relatively prime to n . Table 4.1 c shows that the integers $1,3,5$, and 7 have a multiplicative inverse, but 2, 4 , and 6 do not.

Euclud's algorithm

($3^{\text {rd }}$ century B.C., from Alexandria)
One of the basic techniques of number theory is Euclid's algorithm, which is a simple procedure for determining the greatest common divisor of two positive numbers.

Greatest common divisor

We will use notation $\operatorname{gcd}(a, b)$ to mean the greatest common divisor of a and b. The positive integer c is said tob the greatest common divisor of a and b if

1. c is a divisor of a and of b
2. any divisor of a and b is a divisor of c

An equivalent definition is the following:
$\operatorname{gcd}(a, b)=\max [k$, such that $k \mid a$ and $k \mid b]$
Because we require that the greatest common divisor be positive, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a,-b)=\operatorname{gcd}(-a, b)=\operatorname{gcd}(-a,-b)$. In general, $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$. $\operatorname{gcd}(60,24)=\operatorname{gcd}(60,-24)=12$
Also, because all nonzero integers divide 0 , we have $\operatorname{gcd}(a, 0)=|a|$.

Greatest common divisor (CONT 1)

We stated that two integers are relatively prime if their only common positive integer factor is 1 . This is equivalent to saying that a and b are relatively prime if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$.
8 and 15 are relatively prime because the positive divisors of 8 are 1,2,4, and 8 , and the positive divisors of 15 are $1,3,5$, and 15 , so 1 is the only integer on both lists.

Finding the greatest common divisor

Euclid's algorithm is based on the following theorem: For any nonnegative integer a and any positive integer b, $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
$\operatorname{gcd}(55,22)=\operatorname{gcd}(22,55 \bmod 22)=\operatorname{gcd}(22,11)=11$
To see, that (4.3) works, let $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Then, by the definition of gcd , $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$. For any positive integer b , a can be expressed in the form $a=k b+r \equiv r \bmod b$
$\mathrm{a} \bmod \mathrm{b}=\mathrm{r}$
with k, r integers. Therefore, $(a \bmod b)=a-k b$ for some integer k. But because $\mathrm{d} \mid \mathrm{b}$, it also divides kb . We also have $\mathrm{d} \mid \mathrm{a}$. Therefore, $\mathrm{d} \mid(\mathrm{a} \bmod \mathrm{b})$. This shows, that d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b and $(\mathrm{a} \bmod \mathrm{b})$, then $\mathrm{d} \mid \mathrm{kb}$ and thus $\mathrm{d} \mid[\mathrm{kb}+(\mathrm{a}$ mod $b)$], which is equivalent to da. Thus, the set of common divisors of a and b is equal to the set of common divisors of b and $(a \bmod b)$. Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the theorem.
Equation (4.3) can be used repetitively to determine the greatest common divisor:
$\operatorname{gcd}(18,12)=\operatorname{gcd}(12,6)=\operatorname{gcd}(6,0)=6$
$\operatorname{gcd}(11,10)=\operatorname{gcd}(10,1)=\operatorname{gcd}(1,0)=1$
Euclid's algorithm makes repeated use of (4.3) to determine the greatest common divisor, as follows. The algorithm assumes $\mathrm{a}>\mathrm{b}>0$. It is acceptable to restrict the algorithm to positive integers because $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=$ $\operatorname{gcd}(|a|,|\mathbf{b}|)$

EUCLID'S ALGORITHM

$\operatorname{EUCLID}(\mathrm{a}, \mathrm{b})$

1. $\mathrm{A}:=\mathrm{a} ; \mathrm{B}:=\mathrm{b}$
2. if $B=0$ return $A=\operatorname{gcd}(a, b)$
3. $\mathrm{R}=\mathrm{A} \bmod \mathrm{B}$
4. $\mathrm{A}:=\mathrm{B}$
5. $\mathrm{B}:=\mathrm{R}$
6. goto 2

The algorithm has the following progression:

$\mathrm{A} 1=\mathrm{B} 1 \mathrm{xQ} 1+\mathrm{R} 1$	
$\mathrm{~A} 2=\mathrm{B} 2 \mathrm{xQ} 2+\mathrm{R} 2$	
$\mathrm{~A} 3=\mathrm{B} 3 \times \mathrm{Q} 3+\mathrm{R} 3$	
To find $\operatorname{gcd}(1970,1066)$	
$1970=1 \times 1066+904$	$\operatorname{gcd}(1066,904)$
$1066=1 \times 904+162$	$\operatorname{gcd}(904,162)$
$904=5 \times 162+94$	$\operatorname{gcd}(162,94)$
$162=1 \times 94+68$	$\operatorname{gcd}(94,68)$
$94=1 \times 68+26$	$\operatorname{gcd}(68,26)$
$68=2 \times 26+16$	$\operatorname{gcd}(26,16)$
$26=1 \times 16+10$	$\operatorname{gcd}(16,10)$
$16=1 \times 10+6$	$\operatorname{gcd}(10,6)$
$10=1 \times 6+4$	$\operatorname{gcd}(6,4)$
$6=1 \times 4+2$	$\operatorname{gcd}(4,2)$
$4=2 x 2+0$	$\operatorname{gcd}(2,0)$
Therefore, $\operatorname{gcd}(1970,1066)=2$	

This process should terminate, otherwise we would get an endless sequence of positive integers, each one is strictly smaller than the one before, and this is clearly impossible.

