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SIMPLIFIED DES 

 
S-DES encryption (decryption) algorithm takes 8-bit block of plaintext 
(ciphertext) and a 10-bit key, and produces 8-bit ciphertext (plaintext) 
block. Encryption algorithm involves 5 functions: an initial permutation 
(IP); a complex function fK, which involves both permutation and 
substitution and depends on a key input; a simple permutation function 
that switches (SW) the 2 halves of the data; the function fK again; and  
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SIMPLIFIED DES (CONT 1) 

finally, a permutation function that is the inverse of the initial 

permutation (IP-1). Decryption process is similar. 

The function fK takes 8-bit key which is obtained from the 10-bit initial 

one two times. The key is first subjected to a permutation P10. Then a 

shift operation is performed. The output of the shift operation then passes 

through a permutation function that produces an 8-bit output (P8) for the 

first subkey (K1). The output of the shift operation also feeds into another 

shift and another instance of P8 to produce the 2nd subkey K2. 

We can express encryption algorithm as superposition: 

IPfSWfIP KK 
12

1  

or 

Ciphertext= IP-1 ( )))))int((((
12

extplaIPfSWf KK  

Where 

)))(10((81 keyPShiftPK   

))))(10(((82 keyPShiftShiftPK   

Decryption is the reverse of encryption: 

Plaintext= IP-1 ( )))))((((
21

ciphertextIPfSWf KK  

We now examine S-DES in more details 
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S-DES KEY GENERATION 
Scheme of key generation: 

 
First, permute the 10-bit key k1,k2,..,k10: 
P10(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)=(k3,k5,k2,k7,k4,k10,k1,k9,k8,k6) 
Or it may be represented in such a form 

P10 
3 5 2 7 4 10 1 9 8 6 
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S-DES KEY GENERATION (CONT 1) 

Each position in this table gives the identity of the input bit that produces 

the output bit in this position. So, the 1st output bit is bit 3 (k3), the 2nd 

is k5 and so on. For example, the key (1010000010) is permuted to 

(1000001100). 

Next, perform a circular shift (LS-1), or rotation, separately on the 1st 5 

bits and the 2nd 5 bits. In our example, the result is (00001 11000) 

Next, we apply P8, which picks out and permutes 8 out of 10 bits 

according to the following rule: 

P8 

6 3 7 4 8 5 10 9 

The result is subkey K1. In our example, this yields (10100100) 

We then go back to the pair of 5-bit strings produced by the 2 LS-1 

functions and perform a circular left shift of 2 bit positions on each 

string. In our example, the value (00001 11000) becomes (00100 00011). 

Finally, P8 is applied again to produce K2. In our example, the result is 

(01000011) 
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S-DES ENCRYPTION 

 
The input to the algorithm is an 8-bit block of plaintext, which is 
permuted by IP function: 

IP 
2 6 3 1 4 8 5 7 

At the end of the algorithm, the inverse permutation is used: 
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S-DES ENCRYPTION (CONT 1) 
IP-1 

4 1 3 5 7 2 8 6 
It may be verified, that IP-1(IP(X)) = X. 
The most complex component of S-DES is the function fK, which 
consists of a combination of permutation and substitution functions. The 
function can be expressed as follows. Let L and R be the leftmost 4 bits 
and rightmost 4 bits of the 8-bit input to fK, and let F be a mapping (not 
necessarily one to one) from 4-bit strings to 4-bit strings. Then we let 
 fK(L,R) = (LF(R,SK),R) 
where SK is a subkey and   is the bit-by-bit XOR operation. For 
example, suppose the output of the IP stage in Fig.3.3 is (1011 1101) and 
F(1101,SK) = (1110) for some key SK. Then fK(1011 1101) = (0101 
1101) because (1011)   (1110) = (0101). 
We now describe the mapping F. The input is a 4-bit number (n1 n2 n3 
n4). The 1st operation is an expansion/permutation: 

E/P 
4 1 2 3 2 3 4 1 

For what follows, it is clearer to depict result in this fashion: 
n4|n1 n2|n3 
n2|n3 n4|n1 

The 8-bit subkey K1 = (k11, k12, k13, k14, k15, k16, k17, k18) is added 
to this value using XOR: 

n4+k11|n1+k12 n2+k13|n3+k14 
n2+k15|n3+k16 n4+k17|n1+k18 

Let us rename these bits: 
p00|p01 p02|p03 
p10|p11 p12|p13 

The 1st 4 bits (1st row of the preceding matrix) are fed into the S-box S0 
to produce a 2-bit output, and the remaining 4 bits (2nd row) are fed into 
S1 to produce another 2-bit output. These 2 boxes are defined as follows: 
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S-DES ENCRYPTION (CONT 2) 
The S-boxes operate as follows. The 1st and 4th input bits are treated as a 
2-bit number that specify a row of the S-box, and the 2nd and 3rd input bits 
specify a column of the S-box. The entry in that row and column, in base 
2, is the 2-bit output. For example, if (p00, p03) = (00) and (p01, p02) = 
(10), then the output is from row 0, column 2 of S0, which is 3, or (11) in 
binary. Similarly, (p10, p13) and (p11, p12) are used to index into a row 
and column of S1 to produce an additional 2 bits.  
Next, the 4 bits produced by S0 and S1 undergo a further permutation as 
follows: 

P4 
2 4 3 1 

The output of P4 is the output of function F. 
The function fK only alters the leftmost 4 bits of input. 
The switch function SW interchanges the left and right bits so that the 2nd 
instance of fK operates on a different 4 bits. In the 2nd instance, the E/P, 
S0, S1, and P4 functions are the same. The key input is K2. 

ANALYSIS OF SIMPLIFIED DES 
A brute-force attack on S-DES is feasible since with a 10-bit key there 
are only 1024 possibilities. 
What about cryptanalysis? If we know plaintext (p1p2p3p4p5p6p7p8) 
and respective ciphertext (c1c2c3c4c5c6c7c8), and key 
(k1k2k3k4k5k6k7k8k9k10) is unknown, then we can express this 
problem as a system of 8 nonlinear equations with 10 unknowns. The 
nonlinearity comes from the S-boxes. It is useful to write down equations 
for these boxes. For clarity, rename (p00,p01,p02,p03)=(a,b,c,d) and 
(p10,p11,p12,p13)=(w,x,y,z). Then the operation of S0 is defined in the 
following equations: 
q=abcd+ab+ac+b+d 
r=abcd+abd+ab+ac+ad+a+c+1 
where all additions are made modulo 2. Similar equations define S1. 
Let us show it.  
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ANALYSIS OF SIMPLIFIED DES (CONT 1) 
 
Truth table for S0: 

 q r a d b c 
0 0 1 0 0 0 0 
1 0 0 0 0 0 1 
2 1 1 0 0 1 0 
3 1 0 0 0 1 1 
4 1 1 0 1 0 0 
5 1 0 0 1 0 1 
6 0 1 0 1 1 0 
7 0 0 0 1 1 1 
8 0 0 1 0 0 0 
9 1 0 1 0 0 1 
10 0 1 1 0 1 0 
11 1 1 1 0 1 1 
12 1 1 1 1 0 0 
13 0 1 1 1 0 1 
14 1 1 1 1 1 0 
15 1 0 1 1 1 1 
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Alternating linear maps with these nonlinear maps results in very 
complex polynomial expressions for the ciphertext bits, making 
cryptanalysis difficult. 

RELATIONSHIP TO DES 
DES operates on 64-bit blocks of input. The encryption scheme can be 
defined as 

IPSWfSWSWfSWfIP KKK 
11516

...1  
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RELATIONSHIP TO DES (CONT 1) 

A 56-bit key is used, from which 16 48-bit subkeys are calculated. There 

is an initial permutation of 56 bits followed by a sequence of shifts and 

permutations of 48 bits.  

Within the encryption algorithm, instead of F acting on 4 bits 

(n1n2n3n4), it acts on 32 bits (n1n2..n32). After the initial 

expansion/permutation, the output of 48 bits can be diagrammed as 

n32|n1  n2   n3    n4  |n5 

n4  |n5  n6   n7    n8  |n9 

… 

… 

… 

n28|n29 n30 n31 n32|n1 

This matrix is added (XOR) to a 48-bit subkey. There 8 rows, 

corresponding to 8 S-boxes. Each S-box has 4 rows and 16 columns. The 

1st and last bit of a row of the preceding matrix picks out a row of an S-

box, and the middle 4 bits pick out a column. 

BLOCK CIPHER PRINCIPLES 

Stream ciphers – Vigenere autokey, Vernam cipher – encrypts data 

element by element 

Block ciphers treat a block of plaintext as a whole. Typically, a block size 

is 64 or 128 bits. They are more popular than stream ciphers and mostly 

based on Feistel cipher structure (Horst Feistel, IBM, 1973, 

http://en.wikipedia.org/wiki/Horst_Feistel ). 
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MOTIVATION FOR THE FEISTEL CIPHER 
STRUCTURE 

Encryption should be reversible. Fig. 3.4 shows the logic of a general 
substitution cipher for n=4 (block size). 

 
The encryption and decryption tables can be defined by tabulation, as 
shown in Table 3.1: 
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MOTIVATION FOR THE FEISTEL CIPHER 
STRUCTURE (CONT 1) 

 
If n is small, then statistical characteristics of plaintext survive in the 
ciphertext. If n is large, then number of possible mappings becomes 
large, each of them is a key of the cipher, the size of the key is nn2 . For 
64 bits key size is 2170 102   bits. Such enormous size of the key makes its 
use impossible. Feistel points out that what is needed is an approximation 
to this ideal block-cipher system for large n, built up out of components 
that are easily realizable. 

THE FEISTEL CIPHER 
Feistel proposed that we can approximate the simple substitution cipher 
by utilizing the concept of a product cipher, which is the performing of 
two or more basic ciphers in sequence in such a way that the final result 
or product is cryptographically stronger than any of the component 
ciphers. In particular, Feistel proposed the use of a cipher that alternates 
substitutions and permutations. In fact, this is a practical application of a  
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THE FEISTEL CIPHER (CONT 1) 

proposal by Claude Shannon of 1945 (http://www-gap.dcs.st-

and.ac.uk/~history/Mathematicians/Shannon.html ) to develop a product 

cipher that alternates confusion and diffusion functions 

DIFFUSION AND CONFUSION 

These are measures to thwart cryptanalysis based on statistical analysis. 

In diffusion, the statistical structure of the plaintext is dissipated into long 

range statistics of the ciphertext. This is achieved by having each 

plaintext letter affect the value of many ciphertext digits, which is 

equivalent to saying that each ciphertext digit is affected by many 

plaintext digits. An example of diffusion is to encrypt a message 

M=m1,m2,m3,.. of characters with an averaging operation: 





k

i
inn my

1

)26(mod  

adding k successive letters to get a ciphertext letter yn. The letter 

frequencies in the ciphertext will be more nearly equal than in the 

plaintext (structure dissipated).  

Confusion seeks to make the relationship between the statistics of the 

ciphertext and and the value of the encryption key as complex as 

possible. This is achieved by the use of a complex substitution algorithm. 

These operations became the cornerstone of modern block cipher design. 
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FEISTEL CIPHER STRUCTURE 

 
The inputs to the encryption algorithm are a plaintext block of length 2w 
bits and a key K. The plaintext block is divided into 2 halves, L0 and R0. 
The 2 halves of the data pass through n rounds of processing and the 
combine to produce the ciphertext block. Each round i has as inputs L i-1 
and Ri-1, derived from the previous round, as well as a subkey K i, derived 
from the overall K. In general, the subkeys K i are different from K and 
from each other. 
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FEISTEL CIPHER STRUCTURE (CONT 1) 
 
All rounds have the same structure. A substitution is performed on the 
left half of the data. This is done by applying a round function F to the 
right half of the data and then taking exclusive –OR of the output of that 
function and the left half of the data. The round function has the same 
general structure for each round but is parameterized by the round subkey 
K i . Following this substitution, a permutation is performed that consists 
of the interchange of the two halves of the data. This structure is a 
particular form of the substitution-permutation network (SPN) proposed 
by Shannon.  
The exact realization of a Feistel network depends on the choice of the 
following parameters and design features: 
Block size: large size means greater security but greater overhead (64, 
128 bits) 
Key size: large size means greater security but greater overhead (64, 128 
bits) 
Number of rounds: multiple rounds increase security (16 rounds) 
Subkey generation algorithm: greater complexity – more secure 
Round function: greater complexity – more secure 
Additionally: 
Fast software encryption/decryption: speed of execution becomes a 
concern 
Ease of analysis: it should be difficult to cryptanalyze, but easy to 
analyze for cryptanalytic vulnerabilities. 
We can see that SDES exhibits a Feistel structure with 2 rounds. The one 
difference from a “pure” Feistel structure is that the algorithm begins and 
ends with a permutation function. This difference also appears in full 
DES. 

FEISTEL DECRYPTION ALGORITHM 
The process of decryption with a Feistel cipher is essentially the same as 
the encryption process. The rule is as follows: Use the ciphertext as input 
to the algorithm, but the subkeys K i in the reverse order. That is, use K n 
in the 1st round, and so on, K1 in the last round. This is a nice feature, 
because we can use just one algorithm both for encryption and 
decryption. 
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FEISTEL DECRYPTION ALGORITHM (CONT 1) 
 
Consider encryption/decryption processes: 

 
Let, REi – data travelling through encryption, LDi, RDi – data travelling 
through decryption. Output of ith encryption round is LEi||REi 
(concatenation). To simplify the diagram, it is untwisted, not showing the 
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swap that occurs at the end of each interaction. But intermediate result at 
the end of ith stage of the encryption process is the 2w-bit LEi||REi, and  

FEISTEL DECRYPTION ALGORITHM (CONT 2) 
the intermediate result at the end of the ith stage of decryption is 
LDi||RDi. Then the corresponding input to (16-i)th decryption round is 
LEi||REi, or, equivalently, RD16-i ||LD16-i. Let’s prove that. 
After the last iteration, the two halves are swapped, so that the ciphertext 
is RE16||LE16. Now take the ciphertext and use it as input to the same 
algorithm. The input to the 1st round is RE16||LE16, which is equal to the 
32-bit swap of the output of the 16th round of the encryption process. 
Now we show that the output of the 1st round of the decryption process is 
equal to a 32-bit swap of the output of the 15th round of the encryption 
process. First, consider encryption process, 

LE16=RE15 
RE16=LE15+F(RE15,K16) 

On the decryption side, 
LD1=RD0=LE16=RE15 

RD1=LD0+F(RD0,K16)=RE16+F(RE15,K16)= 
[LE15+F(RE15,K16)]+F(RE15,K16)=LE15 

Thus, we have 
LD1=RE15 
RD1=LE15, 

So, we got that output of the 1st stage of decryption process is equal to 
32-bit swap of the 15th round of the encryption process: 
LD1||RD1=RE15||LE15, and continuing these considerations, we come to 

LDi||RDi=RE(16-i)||LE(16-i). 
Also, we can write 

LEi=RE(i-1) 
REi=LE(i-1)+F(RE(i-1),Ki) 

or 
RE(i-1)=LEi 

LE(i-1)=REi+F(RE(i-1),Ki)= REi+F(LEi,Ki) 
and these equations confirm the assignments shown in the right-hand side 
of Figure 3.6. 
Output of the last round of the decryption process is 

LD16||RD16=RE0||LE0 
A 32-bit swap recovers the original plaintext. Note that the derivation 
does not require that F be a reversible function (for example, it may be a 
constant value 1). 
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