
 1

Block ciphers and the Data Encryption Standard

1. Simplified DES

2. Block cipher principles

3. DES algorithm

4. Strength of DES

5. Differential and linear cryptanalysis

6. Block cipher design principles

7. Block cipher modes of operation

 2

SIMPLIFIED DES

S-DES encryption (decryption) algorithm takes 8-bit block of plaintext
(ciphertext) and a 10-bit key, and produces 8-bit ciphertext (plaintext)
block. Encryption algorithm involves 5 functions: an initial permutation
(IP); a complex function fK, which involves both permutation and
substitution and depends on a key input; a simple permutation function
that switches (SW) the 2 halves of the data; the function fK again; and

 3

SIMPLIFIED DES (CONT 1)

finally, a permutation function that is the inverse of the initial

permutation (IP-1). Decryption process is similar.

The function fK takes 8-bit key which is obtained from the 10-bit initial

one two times. The key is first subjected to a permutation P10. Then a

shift operation is performed. The output of the shift operation then passes

through a permutation function that produces an 8-bit output (P8) for the

first subkey (K1). The output of the shift operation also feeds into another

shift and another instance of P8 to produce the 2nd subkey K2.

We can express encryption algorithm as superposition:

IPfSWfIP KK 
12

1

or

Ciphertext= IP-1 ()))))int((((
12

extplaIPfSWf KK

Where

)))(10((81 keyPShiftPK 

))))(10(((82 keyPShiftShiftPK 

Decryption is the reverse of encryption:

Plaintext= IP-1 ()))))((((
21

ciphertextIPfSWf KK

We now examine S-DES in more details

 4

S-DES KEY GENERATION
Scheme of key generation:

First, permute the 10-bit key k1,k2,..,k10:
P10(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)=(k3,k5,k2,k7,k4,k10,k1,k9,k8,k6)
Or it may be represented in such a form

P10
3 5 2 7 4 10 1 9 8 6

 5

S-DES KEY GENERATION (CONT 1)

Each position in this table gives the identity of the input bit that produces

the output bit in this position. So, the 1st output bit is bit 3 (k3), the 2nd

is k5 and so on. For example, the key (1010000010) is permuted to

(1000001100).

Next, perform a circular shift (LS-1), or rotation, separately on the 1st 5

bits and the 2nd 5 bits. In our example, the result is (00001 11000)

Next, we apply P8, which picks out and permutes 8 out of 10 bits

according to the following rule:

P8

6 3 7 4 8 5 10 9

The result is subkey K1. In our example, this yields (10100100)

We then go back to the pair of 5-bit strings produced by the 2 LS-1

functions and perform a circular left shift of 2 bit positions on each

string. In our example, the value (00001 11000) becomes (00100 00011).

Finally, P8 is applied again to produce K2. In our example, the result is

(01000011)

 6

S-DES ENCRYPTION

The input to the algorithm is an 8-bit block of plaintext, which is
permuted by IP function:

IP
2 6 3 1 4 8 5 7

At the end of the algorithm, the inverse permutation is used:

 7

S-DES ENCRYPTION (CONT 1)
IP-1

4 1 3 5 7 2 8 6
It may be verified, that IP-1(IP(X)) = X.
The most complex component of S-DES is the function fK, which
consists of a combination of permutation and substitution functions. The
function can be expressed as follows. Let L and R be the leftmost 4 bits
and rightmost 4 bits of the 8-bit input to fK, and let F be a mapping (not
necessarily one to one) from 4-bit strings to 4-bit strings. Then we let
 fK(L,R) = (LF(R,SK),R)
where SK is a subkey and  is the bit-by-bit XOR operation. For
example, suppose the output of the IP stage in Fig.3.3 is (1011 1101) and
F(1101,SK) = (1110) for some key SK. Then fK(1011 1101) = (0101
1101) because (1011)  (1110) = (0101).
We now describe the mapping F. The input is a 4-bit number (n1 n2 n3
n4). The 1st operation is an expansion/permutation:

E/P
4 1 2 3 2 3 4 1

For what follows, it is clearer to depict result in this fashion:
n4|n1 n2|n3
n2|n3 n4|n1

The 8-bit subkey K1 = (k11, k12, k13, k14, k15, k16, k17, k18) is added
to this value using XOR:

n4+k11|n1+k12 n2+k13|n3+k14
n2+k15|n3+k16 n4+k17|n1+k18

Let us rename these bits:
p00|p01 p02|p03
p10|p11 p12|p13

The 1st 4 bits (1st row of the preceding matrix) are fed into the S-box S0
to produce a 2-bit output, and the remaining 4 bits (2nd row) are fed into
S1 to produce another 2-bit output. These 2 boxes are defined as follows:
 0 12 3 0 12 3

3

2

1

0

3

0

3

3

0

1

1

2

1

0

0

1

2

3

2

0

1

3

2

1

0

2

3

0

2

3

1

1

3

1

2

2

0

3

0

3

1

0







































 SS

 8

S-DES ENCRYPTION (CONT 2)
The S-boxes operate as follows. The 1st and 4th input bits are treated as a
2-bit number that specify a row of the S-box, and the 2nd and 3rd input bits
specify a column of the S-box. The entry in that row and column, in base
2, is the 2-bit output. For example, if (p00, p03) = (00) and (p01, p02) =
(10), then the output is from row 0, column 2 of S0, which is 3, or (11) in
binary. Similarly, (p10, p13) and (p11, p12) are used to index into a row
and column of S1 to produce an additional 2 bits.
Next, the 4 bits produced by S0 and S1 undergo a further permutation as
follows:

P4
2 4 3 1

The output of P4 is the output of function F.
The function fK only alters the leftmost 4 bits of input.
The switch function SW interchanges the left and right bits so that the 2nd
instance of fK operates on a different 4 bits. In the 2nd instance, the E/P,
S0, S1, and P4 functions are the same. The key input is K2.

ANALYSIS OF SIMPLIFIED DES
A brute-force attack on S-DES is feasible since with a 10-bit key there
are only 1024 possibilities.
What about cryptanalysis? If we know plaintext (p1p2p3p4p5p6p7p8)
and respective ciphertext (c1c2c3c4c5c6c7c8), and key
(k1k2k3k4k5k6k7k8k9k10) is unknown, then we can express this
problem as a system of 8 nonlinear equations with 10 unknowns. The
nonlinearity comes from the S-boxes. It is useful to write down equations
for these boxes. For clarity, rename (p00,p01,p02,p03)=(a,b,c,d) and
(p10,p11,p12,p13)=(w,x,y,z). Then the operation of S0 is defined in the
following equations:
q=abcd+ab+ac+b+d
r=abcd+abd+ab+ac+ad+a+c+1
where all additions are made modulo 2. Similar equations define S1.
Let us show it.

 9

ANALYSIS OF SIMPLIFIED DES (CONT 1)

Truth table for S0:

 q r a d b c
0 0 1 0 0 0 0
1 0 0 0 0 0 1
2 1 1 0 0 1 0
3 1 0 0 0 1 1
4 1 1 0 1 0 0
5 1 0 0 1 0 1
6 0 1 0 1 1 0
7 0 0 0 1 1 1
8 0 0 1 0 0 0
9 1 0 1 0 0 1
10 0 1 1 0 1 0
11 1 1 1 0 1 1
12 1 1 1 1 0 0
13 0 1 1 1 0 1
14 1 1 1 1 1 0
15 1 0 1 1 1 1

dbabacabcdabcabcdcdbddbcacacdabd

bdabbaddcdbddbcacad

abcabdbdabbbdadddcbdbc

dacdcaabcdbadbaabd

dcbdbcdacdcaabcdbadbaabd

bcdccdbdadbbda

cbdacdabdabda

cbdacbdacbdacbda

cbdacbdacbdaq

















)(

)()()(

)()())1)(1()1((

))1()1(()1()1())1)(1((

))((

))()()((

))()()((

))()((

Alternating linear maps with these nonlinear maps results in very
complex polynomial expressions for the ciphertext bits, making
cryptanalysis difficult.

RELATIONSHIP TO DES
DES operates on 64-bit blocks of input. The encryption scheme can be
defined as

IPSWfSWSWfSWfIP KKK 
11516

...1

 10

RELATIONSHIP TO DES (CONT 1)

A 56-bit key is used, from which 16 48-bit subkeys are calculated. There

is an initial permutation of 56 bits followed by a sequence of shifts and

permutations of 48 bits.

Within the encryption algorithm, instead of F acting on 4 bits

(n1n2n3n4), it acts on 32 bits (n1n2..n32). After the initial

expansion/permutation, the output of 48 bits can be diagrammed as

n32|n1 n2 n3 n4 |n5

n4 |n5 n6 n7 n8 |n9

…

…

…

n28|n29 n30 n31 n32|n1

This matrix is added (XOR) to a 48-bit subkey. There 8 rows,

corresponding to 8 S-boxes. Each S-box has 4 rows and 16 columns. The

1st and last bit of a row of the preceding matrix picks out a row of an S-

box, and the middle 4 bits pick out a column.

BLOCK CIPHER PRINCIPLES

Stream ciphers – Vigenere autokey, Vernam cipher – encrypts data

element by element

Block ciphers treat a block of plaintext as a whole. Typically, a block size

is 64 or 128 bits. They are more popular than stream ciphers and mostly

based on Feistel cipher structure (Horst Feistel, IBM, 1973,

http://en.wikipedia.org/wiki/Horst_Feistel).

 11

MOTIVATION FOR THE FEISTEL CIPHER
STRUCTURE

Encryption should be reversible. Fig. 3.4 shows the logic of a general
substitution cipher for n=4 (block size).

The encryption and decryption tables can be defined by tabulation, as
shown in Table 3.1:

 12

MOTIVATION FOR THE FEISTEL CIPHER
STRUCTURE (CONT 1)

If n is small, then statistical characteristics of plaintext survive in the
ciphertext. If n is large, then number of possible mappings becomes
large, each of them is a key of the cipher, the size of the key is nn2 . For
64 bits key size is 2170 102  bits. Such enormous size of the key makes its
use impossible. Feistel points out that what is needed is an approximation
to this ideal block-cipher system for large n, built up out of components
that are easily realizable.

THE FEISTEL CIPHER
Feistel proposed that we can approximate the simple substitution cipher
by utilizing the concept of a product cipher, which is the performing of
two or more basic ciphers in sequence in such a way that the final result
or product is cryptographically stronger than any of the component
ciphers. In particular, Feistel proposed the use of a cipher that alternates
substitutions and permutations. In fact, this is a practical application of a

 13

THE FEISTEL CIPHER (CONT 1)

proposal by Claude Shannon of 1945 (http://www-gap.dcs.st-

and.ac.uk/~history/Mathematicians/Shannon.html) to develop a product

cipher that alternates confusion and diffusion functions

DIFFUSION AND CONFUSION

These are measures to thwart cryptanalysis based on statistical analysis.

In diffusion, the statistical structure of the plaintext is dissipated into long

range statistics of the ciphertext. This is achieved by having each

plaintext letter affect the value of many ciphertext digits, which is

equivalent to saying that each ciphertext digit is affected by many

plaintext digits. An example of diffusion is to encrypt a message

M=m1,m2,m3,.. of characters with an averaging operation:





k

i
inn my

1

)26(mod

adding k successive letters to get a ciphertext letter yn. The letter

frequencies in the ciphertext will be more nearly equal than in the

plaintext (structure dissipated).

Confusion seeks to make the relationship between the statistics of the

ciphertext and and the value of the encryption key as complex as

possible. This is achieved by the use of a complex substitution algorithm.

These operations became the cornerstone of modern block cipher design.

 14

FEISTEL CIPHER STRUCTURE

The inputs to the encryption algorithm are a plaintext block of length 2w
bits and a key K. The plaintext block is divided into 2 halves, L0 and R0.
The 2 halves of the data pass through n rounds of processing and the
combine to produce the ciphertext block. Each round i has as inputs L i-1
and Ri-1, derived from the previous round, as well as a subkey K i, derived
from the overall K. In general, the subkeys K i are different from K and
from each other.

 15

FEISTEL CIPHER STRUCTURE (CONT 1)

All rounds have the same structure. A substitution is performed on the
left half of the data. This is done by applying a round function F to the
right half of the data and then taking exclusive –OR of the output of that
function and the left half of the data. The round function has the same
general structure for each round but is parameterized by the round subkey
K i . Following this substitution, a permutation is performed that consists
of the interchange of the two halves of the data. This structure is a
particular form of the substitution-permutation network (SPN) proposed
by Shannon.
The exact realization of a Feistel network depends on the choice of the
following parameters and design features:
Block size: large size means greater security but greater overhead (64,
128 bits)
Key size: large size means greater security but greater overhead (64, 128
bits)
Number of rounds: multiple rounds increase security (16 rounds)
Subkey generation algorithm: greater complexity – more secure
Round function: greater complexity – more secure
Additionally:
Fast software encryption/decryption: speed of execution becomes a
concern
Ease of analysis: it should be difficult to cryptanalyze, but easy to
analyze for cryptanalytic vulnerabilities.
We can see that SDES exhibits a Feistel structure with 2 rounds. The one
difference from a “pure” Feistel structure is that the algorithm begins and
ends with a permutation function. This difference also appears in full
DES.

FEISTEL DECRYPTION ALGORITHM
The process of decryption with a Feistel cipher is essentially the same as
the encryption process. The rule is as follows: Use the ciphertext as input
to the algorithm, but the subkeys K i in the reverse order. That is, use K n
in the 1st round, and so on, K1 in the last round. This is a nice feature,
because we can use just one algorithm both for encryption and
decryption.

 16

FEISTEL DECRYPTION ALGORITHM (CONT 1)

Consider encryption/decryption processes:

Let, REi – data travelling through encryption, LDi, RDi – data travelling
through decryption. Output of ith encryption round is LEi||REi
(concatenation). To simplify the diagram, it is untwisted, not showing the

 17

swap that occurs at the end of each interaction. But intermediate result at
the end of ith stage of the encryption process is the 2w-bit LEi||REi, and

FEISTEL DECRYPTION ALGORITHM (CONT 2)
the intermediate result at the end of the ith stage of decryption is
LDi||RDi. Then the corresponding input to (16-i)th decryption round is
LEi||REi, or, equivalently, RD16-i ||LD16-i. Let’s prove that.
After the last iteration, the two halves are swapped, so that the ciphertext
is RE16||LE16. Now take the ciphertext and use it as input to the same
algorithm. The input to the 1st round is RE16||LE16, which is equal to the
32-bit swap of the output of the 16th round of the encryption process.
Now we show that the output of the 1st round of the decryption process is
equal to a 32-bit swap of the output of the 15th round of the encryption
process. First, consider encryption process,

LE16=RE15
RE16=LE15+F(RE15,K16)

On the decryption side,
LD1=RD0=LE16=RE15

RD1=LD0+F(RD0,K16)=RE16+F(RE15,K16)=
[LE15+F(RE15,K16)]+F(RE15,K16)=LE15

Thus, we have
LD1=RE15
RD1=LE15,

So, we got that output of the 1st stage of decryption process is equal to
32-bit swap of the 15th round of the encryption process:
LD1||RD1=RE15||LE15, and continuing these considerations, we come to

LDi||RDi=RE(16-i)||LE(16-i).
Also, we can write

LEi=RE(i-1)
REi=LE(i-1)+F(RE(i-1),Ki)

or
RE(i-1)=LEi

LE(i-1)=REi+F(RE(i-1),Ki)= REi+F(LEi,Ki)
and these equations confirm the assignments shown in the right-hand side
of Figure 3.6.
Output of the last round of the decryption process is

LD16||RD16=RE0||LE0
A 32-bit swap recovers the original plaintext. Note that the derivation
does not require that F be a reversible function (for example, it may be a
constant value 1).

 18

