Diffie-Hellman Key Exchange

The $1^{\text {st }}$ published public-key algorithm was invented by Whitfield Diffie and Martin Hellman in 1976 and is generally referred to as Diffie-Hellman key exchange. The purpose of the algorithm is to enable two users to exchange a key securely that can then be used for subsequent encryption of messages. The algorithm itself is limited to exchange of the keys.
The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define the discrete logarithm as follows. First, we define a primitive root of a prime number p as one whose powers generate all the integers from 1 to $\mathrm{p}-1$. That is, if a is a primitive root of the pumber p , then the numbers $a \bmod p, a^{2} \bmod p, . ., a^{p-1} \bmod p$

Diffie-Hellman Key Exchange (Cont 1)

are distinct and consist of the integers from 1 through $\mathrm{p}-1$ in some permutation. For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

$$
b \equiv a^{i} \bmod p, 0 \leq i<p .
$$

The exponent i is referred to as the discrete logarithm, or index of b for the base a , $\bmod \mathrm{p}$. This value is denoted as $\operatorname{ind}_{\mathrm{a}, \mathrm{p}}(\mathrm{b})$. Diffie-Hellman key exchange is summarized in Figure 10.7:

Global Public Elements

q
α
prime number
$\alpha<q$ and α a primitive root of q

User A Key Generation

Select private X_{A}

$$
X_{A}<q
$$

Calculate public Y_{A}

$$
Y_{A}=\alpha^{X_{A} \bmod q}
$$

User B Key Generation

Select private X_{B}
$X_{B}<q$
Calculate public Y_{B}
$Y_{B}=\alpha^{X_{B}} \bmod q$
Generation of Secret Key by User A
$K=\left(Y_{B}\right)^{X_{A}} \bmod q$
Generation of Secret Key by User B
$K=\left(Y_{A}\right)^{X_{B} \bmod q}$

Figure 10.7 The Diffie-Hellman Key Exchange Algorithm

Diffie-Hellman Key Exchange (Cont 2)

Because X_{A} and X_{B} are private, the opponent is forced to take a discrete logarithm to determine the key. For example, attacking the secret key of user B, the opponent must compute

$$
X_{B}=\operatorname{ind}_{\alpha, q}\left(Y_{B}\right)
$$

The opponent then can calculate the key K in the same manner as user B calculates it. For large primes, such an attack is considered infeasible.

Let's consider example. Key exchange is based on the use of the prime number $\mathrm{q}=353$ and a primitive root of 353 , in this case $\alpha=3$. A and B select secret keys $X_{A}=97$ and $X_{B}=233$, respectively.
Each computes its public key:
A computes $\mathrm{Y}_{\mathrm{A}}=3{ }^{97} \bmod 353=40$,
B computes $Y_{B}=3^{233} \bmod 353=248$.
After they exchange public keys, each can compute the common secret key:
A computes $\mathrm{K}=\left(Y_{B}\right)^{X_{A}} \bmod 353=248^{97} \bmod 353=160$,
B computes $\mathrm{K}=\left(Y_{A}\right)^{X_{B}} \bmod 353=40^{233} \bmod 353=160$.
We assume an attacker would have available the following information:
$\mathrm{q}=353, \alpha=3, \mathrm{Y}_{\mathrm{A}}=40, \mathrm{Y}_{\mathrm{B}}=248$.
In this simple example, it would be possible by brute force attack to determine the secret key 160 . In particular, the attacker E can determine the common key by discovering a solution to the equation $3^{a} \bmod 353=40$ or the equation $3^{a} \bmod 353=248$. The brute-force attack is to calculate powers of 3 modulo 353 , stopping when result equals either 40 or 248 . The desired answer is reached with the exponent value of 97 , which provides

$$
3^{97} \bmod 353=40
$$

With larger numbers, problem becomes impractical.

