Chapter 2

System of Units of Measurements

Important Terms

Dimension -

Used to define physical characteristics of a quantity. E.g.: Length, volume, velocity, heat etc.

Unit -

Is a standard or reference by which a dimension can be expressed **numerically**.

- SI Unit The International System of units
- Example:
- meter, kilogram, second, ampere, Kelvin, Mole, Candela, Radian, Steradian.

Introduction

Many approximate unites were used such as:

- Number of days to ride a hoarse over a distance
- Hands
- Bucket or Barrel
- With the advances of technology SI system was adopted.
 - SI Electrical Units
 - SI Mechanical Units
 - SI Temperature scales

1. Fundamental Units

No.	Physical Quantity (symbol)	Unit Name, symbol	Dimension Symbol
1	Length (l)	Meter, m	L
2	Mass (m)	Kilogram, kg	M
3	Time (t)	Second, s	Т
4	Electric current (I)	Ampere, A	I
5	Temperature (θ or T)	Kelvin, K	θ
6	Amount of substance (n)	Mole, mol	N
7	Luminous intensity (Φ)	Candela, cd	J

2. Other Unit Systems

1. English systems

Example: (foot for length, pound for mass)

-Used in medieval England.

```
Ex: 1 in = 0.02540 m,

10.76 \text{ foot}^2 = 1 \text{ m}^2,

1 \text{ psi} = 6897\text{Pa}, 1 pound = 0.454\text{kg}.
```

2. CGS systems (using the centimeter, gram, and seconds as fundamental mechanical units which were employed for scientific purposes).

3. Secondary Units

The product/multiple/derivative of fundamental units are known as secondary units.

- For example:
 - *Multiple*: Area(m²), Volume (m³)
 - *Product*: speed (ms⁻¹), Charge (As)
 - Derived units :Newton(N), Joule (J), Power (W), Frequency (Hz).

3. Secondary Units

Example: Derived Units

Quantity	Unit	Symbol	Dimensions
Charge	Coulomb	C	IT
Capacitance	Farad	F	$M^{-1}L^{-2}T^{4}I^{2}$
Inductance	Henry	Н	$ML^2T^{-2}I^{-2}$
Potential	Volt	V	$ML^2T^{-3}I^{-1}$
		Hz	
Resistance	Ohm	2.2	$ML^2T^{-3}I^{-2}$
Energy	Joule	J	ML^2T^{-2}
Force	Newton	N	MLT^{-2}
Frequency	Hertz	f	1/T
Power	Watt	W	$ML^{2}T^{-3}$
Pressure	Pascal	Pa	$ML^{-1}T^{-2}$

Metric Prefixes

Metric Prefixes: Are letter symbols for multiples and submultiples of 10

TABLE 1-1 Scientific Notation and Metric Prefixes

Value	Scientific notation	Prefix	Symbol
1 000 000 000 000	10^{12}	tera	T
1 000 000 000	10 ⁹	giga	G
1 000 000	10^{6}	mega	M
1000	10^{3}	kilo	K
100	10^{2}	hecto	h
10	10	deka	da
0.1	10^{-1}	deci	d
0.01	10^{-2}	centi	С
0.001	10^{-3}	milli	m
0.000 001	10^{-6}	micro	μ
0.000 000 001	10^{-9}	nano	n
0.000 000 000 001	10^{-12}	pico	p

SI Units, Symbols & Dimensions

TABLE 1-2 SI Units, Symbols, and Dimensions

Quantity	Symbol	Unit	Unit symbol	Dimensions
Length	1	meter	m	[L]
Mass	m	kilogram	kg	[M]
Time	t	second	S	[T]
Area	A	square meter	m^2	$[L^2]$
Volume	V	cubic meter	m^3	$[L^3]$
Velocity	v	meter per second	m/s	$[LT^{-1}]$
Acceleration	а	meter per sec per sec	m/s^2	$[LT^{-2}]$
Force	F	newton	N	$[MLT^{-2}]$
Pressure	p	newton per square meter	N/m^2	$[ML^{-1}T^{-2}]$
Work	W	joule	J	$[ML^2T^{-2}]$
Power	P	watt	W	$[ML^2T^{-3}]$

Dimension Analysis

It is necessary for every equation to be balanced dimensionally.

Dimension of physical quantity:
 [force] = [mass X acceleration] = MLT⁻²
 Unit for force = N = kgms⁻²

Example:

The unit of voltage is volt (V). Express the dimension of voltage using only base units.

Solution

From definition: electric potential V is expressed either Joules per coulomb or in volts.

Then:

Volts = joules / coulomb $V = FL/Q = MLT^{-2} X L / IT$ $= ML^2T^{-3}I^{-1}$

Answer: $V = kgm^2s^{-3}A^{-1}$

Exercise:

- Attempted by students –
- Prove the dimensions of all the quantities listed in slide 9.
- (Hint: Start by knowing the definitions, i.e. how the quantities are obtained).
- Example: Charge = Current x time

Q = IT

In base units: <u>As</u>