## Chapter 2

## System of Units of Measurements

## Important Terms

- Dimension -

Used to define physical characteristics of a quantity. E.g.: Length, volume, velocity, heat etc.

- Unit -

Is a standard or reference by which a dimension can be expressed numerically.

- SI Unit - The International System of units
- Example:
- meter, kilogram, second, ampere, Kelvin, Mole, Candela, Radian, Steradian.


## Introduction

Many approximate unites were used such as:

- Number of days to ride a hoarse over a distance
- Hands
, Bucket or Barrel
- With the advances of technology SI system was adopted.
-     - SI Electrical Units
- SI Mechanical Units
- SI Temperature scales


## 1. Fundamental Units

| No. | Physical Quantity | Unit Name, symbol | Dimension Symbol |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (symbol) |  |  |  |
| 1 | Length (l) | Meter, m | L |  |
| 2 | Mass (m) | Kilogram, kg | M |  |
| 3 | Time (t) | Second, s | T |  |
| 4 | Electric current (I) | Ampere, A | I |  |
| 5 | Temperature ( $\theta$ or $T$ ) | Kelvin, K | $\theta$ |  |
| 6 | Amount of substance <br> (n) | Mole, mol | N |  |
| 7 | Luminous intensity <br> (Ф) | Candela, cd | J |  |

## 2. Other Unit Systems

- 1. English systems

Example: (foot for length, pound for mass)
-Used in medieval England.
Ex: 1 in $=0.02540 \mathrm{~m}$,

$$
10.76 \text { foot }^{2}=1 \mathrm{~m}^{2},
$$

$$
1 \mathrm{psi}=6897 \mathrm{~Pa}, 1 \text { pound }=0.454 \mathrm{~kg} .
$$

- 2. CGS systems (using the centimeter, gram, and seconds as fundamental mechanical units which were employed for scientific purposes).


## 3. Secondary Units

- The product/multiple/derivative of fundamental units are known as secondary units.
- For example:
- Multiple : Area( $\mathrm{m}^{2}$ ), Volume ( $\mathrm{m}^{3}$ )
- Product: speed ( $\mathrm{ms}^{-1}$ ) , Charge (As)
- Derived units :Newton(N), Joule (J), Power $(\mathrm{W})$, Frequency $(\mathrm{Hz})$.


## 3. Secondary Units

## Example: Derived Units

| Quantity | Unit | Symbol | Dimensions |
| :--- | :--- | :--- | :--- |
| Charge | Coulomb | C | $I T$ |
| Capacitance | Farad | F | $M^{-1} L^{-2} T^{4} I^{2}$ |
| Inductance | Henry | H | $M L^{2} T^{-2} I^{-2}$ |
| Potential | Volt | V | $M L^{2} T^{-3} I^{-1}$ |
| Resistance |  | Hz |  |
| Energy | Ohm | $\mathrm{\Delta L}$ | $M L^{2} T^{-3} I^{-2}$ |
| Force | Newton | N | $M L^{2} T^{-2}$ |
| Frequency | Hertz | f | $M L T^{-2}$ |
| Power | Watt | W | $1 / T$ |
| Pressure | Pascal | Pa | $M L^{2} T^{-3}$ |
|  |  |  | $M L^{-1} T^{-2}$ |

## Metric Prefixes

## Metric Prefixes: Are letter symbols for multiples and submultiples of 10

TABLE 1-1 Scientific Notation and Metric Prefixes

| Value | Scientific notation | Prefix | Symbol |
| ---: | :---: | :--- | :---: |
| 1000000000000 | $10^{12}$ | tera | T |
| 1000000000 | $10^{9}$ | giga | G |
| 1000000 | $10^{6}$ | mega | $\mathbf{M}$ |
| 1000 | $10^{3}$ | kilo | K |
| 100 | $10^{2}$ | hecto | h |
| 10 | 10 | deka | da |
| 0.1 | $10^{-1}$ | deci | d |
| 0.01 | $10^{-2}$ | centi | c |
| 0.001 | $10^{-3}$ | milli | $\mathbf{m}$ |
| 0.000001 | $10^{-6}$ | micro | $\boldsymbol{\mu}$ |
| 0.000000001 | $10^{-9}$ | nano | n |
| 0.000000000001 | $10^{-12}$ | pico | p |

## SI Units, Symbols \& Dimensions

TABLE 1-2 SI Units, Symbols, and Dimensions

| Quantity | Symbol | Unit | Unit <br> symbol | Dimensions |
| :--- | :---: | :--- | :--- | :--- |
| Length | $l$ | meter | m | $[L]$ |
| Mass | $m$ | kilogram | kg | $[M]$ |
| Time | $t$ | second | s | $[T]$ |
| Area | $A$ | square meter | $\mathrm{m}^{2}$ | $\left[L^{2}\right]$ |
| Volume | $V$ | cubic meter | $\mathrm{m}^{3}$ | $\left[L^{3}\right]$ |
| Velocity | $v$ | meter per <br> second | $\mathrm{m} / \mathrm{s}$ | $\left[L T^{-1}\right]$ |
| Acceleration | $a$ | meter per sec | $\mathrm{m} / \mathrm{s}^{2}$ | $\left[L T^{-2}\right]$ |
|  |  | per sec |  |  |
| Force | $F$ | newton | N | $\left[M L T^{-2}\right]$ |
| Pressure | $p$ | newton per | $\mathrm{N} / \mathrm{m}^{2}$ | $\left[M L^{-1} T^{-2}\right]$ |
| Work | $W$ | square meter |  |  |
| Power | $P$ | joule | J | $\left[M L^{2} T^{-2}\right]$ |
|  |  | watt | W | $\left[M L^{2} T^{-3}\right]$ |

## Dimension Analysis

- It is necessary for every equation to be balanced dimensionally.
- Dimension of physical quantity: [force] $=[$ mass X acceleration $]=$ MLT $^{-2}$ Unit for force $=\mathrm{N}=\mathrm{kgms}^{-2}$


## Example:

- The unit of voltage is volt (V). Express the dimension of voltage using only base units.
- Solution

From definition: electric potential $V$ is expressed either Joules per coulomb or in volts.
Then:
Volts = joules / coulomb
$\mathrm{V}=\mathrm{FL} / \mathrm{Q}=\mathrm{MLT}^{-2} \mathrm{XL} / \mathrm{IT}$
$=\left.M L^{2} T^{-3}\right|^{-1}$

- Answer: $\mathrm{V}=\underline{\mathrm{kgm}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}}$


## Exercise:

- Attempted by students -
- Prove the dimensions of all the quantities listed in slide 9.
- (Hint: Start by knowing the definitions, i.e. how the quantities are obtained).
- Example: Charge $=$ Current $\times$ time

$$
\mathrm{Q}=\underline{I T}
$$

In base units: As

