CHAPTER 1 (Text Book)

MEASUREMENT AND Error

https://www.facebook.com/ptuk.drwaelsalah

Objectives:

- To introduce the elements of measurement systems
- To introduce the functions and characteristics of instruments
- To define measurement errors

To know the key terms of measurement errors
To introduce the different types of errors
To calculate errors in measurements

Measurement System

- A measurement system is a system that converts an unknown quantity being measured to a numerical unit using an instrument.
- Measurement:

The use of an instrument or device as a physical mean to find a value or quantity.

- Result: Number + measured unit.

$$
\text { E.g.: } 6.8 \mathrm{~kg} / \mathrm{ms}^{2}
$$

Terms

- Measurand - the unknown quantity to be measured.
- Instrument - physical device used to determine the measurand numerically.

Accuracy

Closeness with which an instrument reading approaches the true value of the quantity measured.

- Example:

Reading from instrument $A, \ell=3.82 \mathrm{~cm}$
Reading from instrument $B, \ell=3.91 \mathrm{~cm}$
True value, $\ell=3.90 \mathrm{~cm}$

Conclusion: Instrument B is more accurate.

Precision

It is a measure of reproducibility of the

 measurement- E.g. given a fixed value of quantity, precision is a measure of the degree of agreement within a group of measurements.
It is composed of 2 characteristics:
a) Conformity b) Number of significant figures

Instrument A, $/=3.82,3.82,3.81,3.82 \ldots$
Instrument B, $/=3.82,3.84,3.83,3.80 \ldots$ Conclusion: Instrument A is more precise.

Accuracy and Precision

- True value, $/=1.50 \mathrm{~mm}$ Instrument $A, I=1.475 \mathrm{~mm}$ Instrument $B, I=1.49 \mathrm{~mm}$
- Conclusion: Instrument A is more precise Instrument B is more accurate

High precision
Low accuracy

High accuracy

Low precision Low accuracy

Precision and accuracy of measurement.

Sensitivity

The ratio of the magnitude of the output signal or response to a change the magnitude of input signal.

Example: Sensitivity

- A wheastone bridge requires a change of 7Ω in an unknown arm of the bridge to produce a change in deflection of 3 mm of the galvanometer. Determine the sensitivity.
- Sensitivity = magnitude of output response magnitude of input

$$
=\underline{3 \mathrm{~mm}} \underset{7 \Omega}{ }=\underline{0.429 \mathrm{~mm} / \Omega}
$$

Example: Sensitivity

The following resistance values of a platinum resistance thermometer were measured at a range of temperatures. Determine the measurement sensitivity of the instrument in ohms $/{ }^{\circ} \mathrm{C}$.

Resistance (Ω)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
307	200
314	230
321	260
328	290

Solution

If these values are plotted on a graph, the straight-line relationship between resistance change and temperature change is obvious.

For a change in temperature of $30^{\circ} \mathrm{C}$, the change in resistance is 7Ω. Hence the measurement sensitivity $=7 / 30=0.233 \Omega /{ }^{\circ} \mathrm{C}$.

Terms

- Accuracy
- Precision
- Sensitivity
- Reliability
- Resolution
- Response time
- Frequency
response
- Switching time
- Bandwidth
- Hysteresis
-True value
-Measured value
-Nominal value
-Absolute \& static error
-Relative absolute error

Reliability

The period an instrument can maintain its accuracy and precision.

- Example:

After two years of using an instrument...

Accuracy of Instrument A drops 1\% Accuracy of Instrument B drops 5\%

Conclusion: Instrument A is more reliable.

Resolution/ Discrimination

The smallest increment in input which can be detected with certainty by an instrument.

- Example:

A mercury thermometer reacts after every
$0.5^{\circ} \mathrm{C}$ change of ambient temperature.

- This thermometer won't have any reaction if the change in temperature is $0.4^{\circ} \mathrm{C}$ or less. And it will move a step if the change is $0.6^{\circ} \mathrm{C}$

Response time

The time taken for an instrument to sense an input and give a steady state output.

- Example:

A mercury thermometer reacts for every $0.5^{\circ} \mathrm{C}$ change of ambient temperature which requires 1.5 s to settle.

- If the temperature changes rapidly every 1 s , then this thermometer would never give a proper value.

Bandwidth

The range of frequency that an equipment can sense and give satisfactory output response.

Example:

- The bandwidth of our ears is from 20 Hz to 20 kHz . Any sound that is outside this range is undetectable.
- Oscilloscope can display signals with frequency range $0-20 \mathrm{kHz}$. Freq. $>20 \mathrm{kHz}$ can not be displayed.

Error Calculation

True value

- The actual value of a quantity.
- It is almost impossible to obtain in practice.
- For example:

Light speed $=299792458.63 \ldots \mathrm{~m} / \mathrm{s}$

Measured value

- Value of a measurand as indicated by an instrument.
- It should always be followed by its uncertainty in measurement.
- For example:

$$
\begin{aligned}
& \ell=(3.5 \pm 0.1) \mathrm{cm} \\
& \mathrm{R}=(102.5 \pm 0.2) \Omega
\end{aligned}
$$

Nominal value

Value of the quantity specified by the manufacturer

- It is followed by tolerance level
- For example:
$\ell=3.5 \mathrm{~cm} \pm 10 \%$
$\mathrm{R}=10 \mathrm{k} \Omega \pm 5 \%$
(True value is between $9.5 \mathrm{k} \Omega$ and $10.5 \mathrm{k} \Omega$)

Absolute Error

- Absolute Error: The difference between the measured value and the true value of the quantity

$$
\delta A=A_{m}-A_{t}
$$

$\delta \mathrm{A}=$ Absolute error
$A_{m}=$ measured value,
$A_{t}=$ true value

Relative Error

- Relative error:
- The ratio of absolute error to the true value
\rightarrow Relative error (as a fraction):

$$
\varepsilon_{r}=\delta A / A_{t}=A_{m}-A_{t} / A_{t}
$$

\rightarrow Relative Percentage Error (as Percentage \%)
\% Error $=\frac{\text { AbsuluteError }}{\text { AcualValue }} \times 100 \%$

Guarantee/Limiting Error

Guarantee/Limiting Error

- Manufacturer must always guarantee a certain accuracy of their product numerically to ensure the quality of their instrument.

The manufacturer specifies the deviations from the nominal value of a particular quantity defined as limiting errors or guarantee errors.

Actual Value

- Actual value $A_{a}=A_{n} \pm \delta A$
$A_{a}=$ Actual value
$A_{n}=$ Nominal value
$\delta A=$ limiting error
- Hence, A_{a} satisfies:

$$
\mathbf{A}_{\mathrm{n}}-\delta \mathbf{A} \leq \mathbf{A}_{\mathrm{a}} \leq \mathbf{A}_{\mathrm{n}}+\delta \mathbf{A}
$$

- Example: $R=(102.5 \pm 0.2) \Omega$

Magnitude of R is $102.3 \Omega \leq \mathrm{R} \leq 102.7 \Omega$

Relative limiting error

- Relative limiting error $=\varepsilon_{r}=\delta A / A_{n}$ \% Relative error $=\varepsilon_{r} \times 100 \%$
- Example:

$$
\begin{aligned}
& \mathrm{C}=10 \mu \mathrm{~F} \pm 5 \% \\
& \delta \mathrm{~A}=\varepsilon_{\mathrm{r}} \mathrm{~A}_{\mathrm{n}}=0.05 \times 10 \mu \mathrm{~F}=0.5 \mathrm{uF} \\
& 9.50 \mu \mathrm{~F} \leq \mathrm{A}_{\mathrm{a}} \leq 10.5 \mu \mathrm{~F}
\end{aligned}
$$

Example:

A 0-150V voltmeter has a guarantee accuracy of 1% at full-scale reading. The voltage measured by this instrument is 83 V .
a. Calculate the limiting error in per cent.
b. Calculate Actual value.

Solution:

a. L.E. $=0.01 \times 150 \mathrm{~V}=1.5 \mathrm{~V}$

The \%E at a meter indication of 83 V

$$
\% E=(1.5 / 83) * 100 \%=1.81 \%
$$

b. Actual value $=83 \pm 1.81 \%=83 \mathrm{~V} \pm 1.5 \mathrm{~V}$

Combination of limiting errors

- If the errors in the component quantities, $d x_{i}$ are represented by $\pm \delta \mathrm{x}_{1}, \pm \delta \mathrm{x}_{2}, \ldots, \pm \delta \mathrm{x}_{\mathrm{n}}$,
, the limiting error δy in y is given by:

$$
\delta y= \pm\left(\delta x_{1}+\delta x_{2}+\ldots \delta x_{n}\right)
$$

\rightarrow The limiting error obtained for the worst possible combination by direct sum of all possible Errors.

$$
X=\left(x_{1 *} x_{2}\right) / x_{3}
$$

The resultant Error $=\delta \mathbf{y}= \pm\left(\delta \mathbf{x}_{1}+\delta \mathbf{x}_{2}+\delta \mathbf{x}_{3}\right)$

Total error when combining multiple measurements

Example:

A rectangular-sided block has edges of lengths a, b and c, and its mass is m. If the values and possible errors in quantities a, b, c and m are as shown below, calculate the value of density and the possible error in this value.

$$
a=100 \mathrm{~mm} \pm 1 \%, b=200 \mathrm{~mm} \pm 1 \%, c=300 \mathrm{~mm} \pm 1 \%, m=20 \mathrm{~kg} \pm 0.5 \% .
$$

```
Solution
Value of \(a b=0.02 \mathrm{~m}^{2} \pm 2 \%\) (possible error \(=1 \%+1 \%=2 \%\) )
Value of \((a b) c=0.006 \mathrm{~m}^{3} \pm 3 \%\) (possible error \(=2 \%+1 \%=3 \%\) )
Value of \(\frac{m}{a b c}=\frac{20}{0.006}=3330 \mathrm{~kg} / \mathrm{m}^{3} \pm 3.5 \%\) (possible error \(=3 \%+0.5 \%=3.5 \%\) )
```

Or Possible error in Density : 1\% +1\% +1\% + 0.5\% = 3.5\%

Main Types of Errors

-1. Gross Errors
2. Systematic Error

- Instrumental Errors
- Environmental Errors
- 3. Observational Errors
-4. Random Error

1. Gross Errors

- Refer to errors due to human mistake in reading instruments and recording and calculating measurement results.
- Example:
a) Read the temperature as $31.5^{\circ} \mathrm{C}$ while the actual reading is $21.5^{\circ} \mathrm{C}$
b) Read $25.8^{\circ} \mathrm{C}$ but record as $28.5^{\circ} \mathrm{C}$
c) $1+1=3$ instead of 2
- Prevention: - Read and record carefully.
- Take the average of several readings (at least 3 readings).

2. Systematic Errors

- A. Instrumental Errors
(i) Due to inherent shortcomings of the instruments
- Inherent due to their mechanical structure
- May be due to improper calibration, construction
. Due to faulty instrument.
, To Overcome:
* - Re-calibrate carefully
- Apply correction factor after determining the instrumental errors
- Proper maintenance, use and handling of instruments.

2. Systematic Errors

ii) Due to misuse of instrument

- Failure to adjust the zero of instrument (calibrate)
- Using leads of too high resistance (when measuring low R value)
- Measuring an ac signal which is beyond the instrument bandwidth response.
- To overcome:
- Recalibrate system carefully
- Use a right instrument for a particular application.

2. Systematic Errors

iii) Loading effect of instruments

- Due to the internal resistance of the device.
- Due to the active filters effect of the device.
- Improper ground or reference.

To overcome:

- Loading effect causes inaccuracy in measurement can be avoided by using appropriate instruments or using them intelligently.

2. Systematic Errors

B. Environmental Errors

- Effect due to temperature, pressure, humidity, dust, vibration or external magnetic or electrostatic fields.
- To overcome:
- Keep the surrounding conditions as constant as possible.
- Use equipment which not affected by these effects.
- Employ techniques which eliminate the effects of disturbances
- Apply computed correction

3. Observational Errors

Observational error is the error due to observation technique.

There are two common types of observational errors:
A) Parallax error - Error due to wrong observation angle/position.
B) Reaction time error -Error caused by the different instantaneous reaction of different people.

Example: Timer Watch

4. Random Error

These are the errors due to unknown causes.

These are un avoidable errors. Even though the devise been calibrated.

- To overcome this issue:
- More reading need to be taken.
- Using statistical means to obtain the best approximation to the true value.

Statistical Analysis

- Used to obtain the best approximation to the true value.

Statistical Analysis

Suppose an experiment were repeated many, say N , times to get, $\mathrm{X} 1, \mathrm{X} 2, \ldots ., \mathrm{Xn}$

Arithmetic Mean $\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{N}=\frac{\sum_{n-1} x_{n}}{N}$

Deviation from the mean $\quad d_{i}=x_{i}-x$

Average Deviation

$$
D=\frac{\left|d_{1}\right|+\left|d_{2}\right|+\ldots .+\left|d_{n}\right|}{N}=\frac{\sum|d|}{n}
$$

Standard Deviations σ

$$
\begin{gathered}
\sigma=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\ldots .+d_{n}^{2}}{N}} \\
\sigma=\sqrt{\frac{\sum_{n=1}^{N}\left(d_{i}\right)^{2}}{N}}
\end{gathered}
$$

Practically, the number of readings are finite So, the Standard Deviations σ Divided by N -1

$$
\sigma=\sqrt{\frac{\sum_{n=1}^{N}\left(d_{i}\right)^{2}}{N-1}}
$$

$$
\sigma^{2}=\text { Variance }
$$

Probability of Errors

- The Gaussian (Normal) law of Errors form the basis for probable error analytical study.

- The most probable true reading is the center or mean value.

Probable Error (r)

- It is found that approx. 68\% of of all the Data lies between the limits of $-\sigma$ and $+\sigma$ from the mean.
- So, for the case of large number of measurements the probable error (r) defined as

$$
r= \pm 0.6745 \sigma
$$

Table 1 shows a tabulation of 50 readings of the voltage that were taken at small time intervals and recorded to the nearest 0.1 V . The nominal value of the measured voltage was 100.0 V .

Voltage reading (volts)	Number of readings
99.7	1
99.8	4
99.9	12
100.0	19
100.1	10
100.2	3
100.3	1

Table 1: Tabulation of Voltage Readings

Figure 1 shows that the largest number of readings (19) occurs at the central value of 100.0 V , while the other readings are placed more or less symmetrically on either side of the central value.

The error distribution curve of Figure 2 is based on the Normal law and shows a symmetrical distribution of errors.
This normal curve may be regarded as the limiting form of the histogram of Figure 1 in which the most probable value of the true voltage is the mean value of 100.0 V .

Figure 2: Curve for Normal Law. The highlighted portion(between bold dotted lines) indicates the region of probable error, where $r= \pm 0.6745 \sigma$.

Example 11

Ten measurements of the resistance of a resistor gave 101.2 , 101.7, 101.3, $101.0,101.5,101.3,101.2,101.4,101.3$, and 101.1 .

Assume that only random errors are present. Calculate

1. the arithmetic mean,
2. the standard deviation of the readings,
3. the probable error.

Reading	Deviation	
x	d	d^{2}
101.2	-0.1	0.01
101.7	0.4	0.16
101.3	0.0	0.00
101.0	-0.3	0.09
101.5	0.2	0.04
101.3	0.0	0.00
101.2	-0.1	0.01
101.4	0.1	0.01
101.3	0.0	0.00
101.1	-0.2	0.04
$\Sigma x=1,013.0$	$\Sigma\|d\|=1.4$	$\Sigma d^{2}=0.36$

